
AD-A215 740

lie

0% ELECTE
: < DEC1-51989!

Payload Invariant Controt via Neural Networks:

Development and Experimental Evaluation

THESIS

Mark Alme Johnson
Captain, USAF

AFIT/GE/ENG/89D-20

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
J~UT1N STATEN EN- A

Approved for puzblic A0~a., -."Ibuon . ,i, 89 12 14)4O

AFIT/GE/ENG/89D-20

Payload Invariant Control via Neural Networks:

Development and Experimental Evaluation

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Elec+rical Engineering

Mark Alme Johnson, B.S.E.E.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Pre-face

Exploring uncharted regions in science requires the support and assistance

of many people. My deepest appreciation goes to Dr. Michael B. Leahy Jr..

who first presented the problem and then provided encouragement and guidance

throughout the research effort. He is also the driving force behind the robotics

research currently being performed at the Air Force Institute of Technology. A

special thanks go to Dr. Steven K. Rogers and Capt. Dennis Ruck for their

assistance and insights into the theory and operation of neural networks. I would

like to thank Dr. Gary Lamont for his guidance and support on hardware related

Many issues in science remain unexplored due to a lack of the required back-

ing. Therefore, I wish to express my gratitude to the Armstrong Aerospace Medical

Research Laboratory Robotic Telepresence Program for looking to the future and

sponsoring this research. Mr Dan Zambon, of the Information Systems Labora-

tory, deserves a special thanks for keeping the computers running and providing

any possible assistance. I- would also like to thank Mr. inhn Cholsa of the AFIT

Model Fabrication Shop for producing the masses used in the experiments.

Contributions to research come in many forms. I wish to acknowiecige the

camraderie of Vernon Milholen and Samuel Sablan. We threw around many ideas

and gave each other valuable support and advice. In closing, I wish to thank my

parents for raising me to think as an individual and pay attention to the ideas of

others.

Acoeaion For-
NTIS P6AI Mark Alme Johnson
DTIC TAB
Unaxzimuced 0
Justtrioeiuo.

By

DisLributlton/

Availability Codes

Dn Avail and/orD, at I

Table of Contents

Page

Preface........

Table of Contents......

List of Figures. vii

List of Tables xi

Abstract xii

1. Introduction 1-1

1.1 Motivation. 1-1

1.2 Objective 1-1

1.3 Problem Statement 1-2

1.4 Method of Approach 1-5

1.5 Thesis Contributions. 1-8

1.6 Organization. 1-9

Ii. Background Information 2-1

2.1 Introduction. 2-1

2.2 Neural Networks 2-1

2.2.1 Neural Network Operation 2-3

2.2.2 Neural Network Training 2-5 3
A.&I

2.2.3 Why Neural Networks?7 2-7 ice

2.3 Robot Control 2- io

2.3.1 Introduction 2-7

Ition *

Av liability codeg

Distj Special

LOz

Page

2.3.2 Background Information 2-8

2.3.3 Current Directions ir. Robot Control Research 2-11

2.3.4 Adaptive Model-Based Control 2-12

2.3.5 Estimating Paameters 2-14

2.4 Pattern Recognition 2-17

2.4.1 Introduction 2-17

2.4.2 Background 2-17

2.4.3 Classical Decision Theory 2-18

2.5 Manipulator Dynamics Based Trajectory Control w:.th

Neural Nets 2-19

2.6 Summary 2-22

III. The Approach Taken 3-1

3.1 A Beginning 3-1

3.2 Neural Network Payload Estimation 3-2

3.2.1 Presentation of Estimated Payload to a Con-

troller 3-5

3.3 Adaptive Controller Realization 3-6

3.4 Summary 3-12

IV. Experimental Analysis 4-1

4.1 Introduction 4-1

4.2 Experimental Environment 4-1

4.3 NNPE Development and Validation 4-3

4.4 Control System Implementation 4-15

4.,5 Experimental Performance Evaluation 4-15

4.5.1 Original Trajectory Performance 4-17

4.5.2 Performance on Alternative Trajectories . . 4-22

4.5.3 Performance on Variable Length Trajectories 4-27

1V

Page

4.5.4 Neural Network Sample Rate Variation Tests 4-27

4.5.5 Performance Repeatability Tests. 4-33

4.5.6 Payload Range Performance Tests. 4-37

4.5.7 Neural Network 'Firing' during Test Execution 4-40

4.6 Summary. 4-52

V. Conclusions and Recommendations. 5-1

5.1 Conclusions. 5-i

.5.2 Recommendations and Future Directions 5-2

A. Contemporary Neural Approaches to Robot Control. A-i

A. I Introduction. A-i

A.2 Why Neural Networks?7 . A-!

A.3 How are Neural Nets being used for Robot Control? . A-2

A.4 Sensor Based Robot Control A-3

A.5 Task Development and Control. A-13

A.6 Training Methods A-i5

A.7 Summary A-i7

B. A Proposed Temporal Multilayer Perceptron B-i

B.1 Introduction. B-i

B.2 Temporal Multilayer Perceptron Operation B-i

B.3 Temporal Mult ilayer Percept ron Neural Network TL an-

ing. B-4

C. Troubleshooting. C-i

C.1 Introduction. C-i

C.2 Problems Encountered. C-i

C.3 Summary. C-8

Page

Bibliography BIB-i

Vita. VITA-i

vi

List of Figures

Figure Page

2.1. A Biological Neuron 2-3

2.2. An Artificial Neuron 2-4

2.3. A Simple Artificial Neural Network Structure 2-5

2.4. Multilayer Perceptron Feedforward Operation Flow Diagram . 2-6

2.5. A Serial Link Manipulator: PUMA 2-9

2.6. A Parallel Link Manipulator 2-10

2.7. Model-Based Control System Block Diagram 2-13

2.8. Adaptive Model-Based Controller Block Diagram 2-14

2.9. A Simple Feature Space 2-19

2.10. Binary Search Tree 2-20

2.11. Hybrid Control Structure 2-22

3.1. Adaptive Model-Based Neural Network Controller 3-8

3.2. AMBNNC Operation Flow Diagram 3-10

3.3. Temporal Arrays of Neural Networks 3-11

4.1. Payload Class Trajectory Data Dispersion 4-5

4.2. Original Trajectory Profiles 4-6

4.3. PUMA-560 with Payload Attached 4-7

4.4. Training Time 'Lock In' Testing Results 4-10

4.5. 'Lock In' Testing Training Accuracy 4-11

4.6. 'Lock In' Testing Training Error 4-12

4.7. Training Results using 44 versus 109 Vector Training Sets 4-13

4.8. Final Training and Operation Testing Results 4-14

4.9. Trajectory Profiles 4-16

vii

Figure Page

4.10. Tracking Accuracy using NNPE on Trajectory IA with 0.0 Kilo-

grain Payload 4-18

4.11. Tracking Accuracy using NNPE on Trajectory IA with 1.0 Kilo-

gram Payload 4-19

4.12. Tracking Accuracy using NNPE on Trajectory IA with 2.0 Kilo-

gram Payload 4-20

4.13. Tracking Accuracy using NNPE on Trajectory IA with 3.0 Kilo-

gram Payload- 1-21

4.14. Tracking Accuracy using NNPE on Trajectory lB with 1.0 Kilo-

gram Payload 4-23

4.15. Tracking Accuracy using NNPE on Trajectory lB with 2.0 Kilo-

gram Payload 4-24

4.16. Tracking Accuracy using NNPE on Trajectory 1C with 1.0 Kilo-

gram Payload 4-25

4.17. Tracking Accuracy using NNPE on Trajectory ID with 2.0 Kilo-

gram Payload 4-26

4.18. Tracking Accuracy using NNPE on Trajectory 5A with 1.0 Kilo-

gram Pay!,,ad. 4-28

4.19. Tracking Accuracy using NNPE on Trajectory 2A with 1.0 Kilo-

gram Payload 4-29

4.20. Tracking Accuracy using NNPE on Trajectory 3A with 1.0 Kilo-

gram Payload 4-30

4.21. Tracking Accuracy using NNPE on Trajectory IA with 2.0 Kilo-

gram Payload 4-31

4.22. Tracking Accuracy using NNPE on Trajectory IA with 2.0 Kilo-

gram Payload 4-32

4.23. Ten Run Mean Tracking Accuracy using NNPE on Trajectory IA

with 1.0 Kilogram Payload 4-33

4.24. fen Run Mean Tracking Accuracy using NNPE on Trajectory lB

with 1.0 Kilogram Payload 4-34

viii

Figure Page

4.2.5. Ten Run Mean Tracking Accuracy using NNPE on Trajec orv IC

with 1.0 Kilogram Payload 35

4.26. Ten Run Mean Tracking Accuracy using NNPE on Trajectory ID

with 1.0 Kilogram Payload 4_36

4.27. Tracking Accuracy using NNPE on Trajectory 1A with 2.0 Kilo-

gram Payload

4.28. Tracking Accuracy using NNPE un Trajectory 1C with 2.0 Kilo-

grain Payload 4-:3

4.29. Firing of Neural Networks during Trajectory IA with 0.0 Kilogram

Payload 4-41

4.30. Firing of Neural Networks during Trajectory IA with 1.0 Kilogram

Payload 4-42

4.31. Firing of Neural Networks during Trajectory 1A with 2.0 Kili(graln

Payload -.43

4.32. Firing of Neural Networks during Trajectory 1A with 3.0 Kilogram

Payload 4-4.4

4.33. Firing of Neural Networks during Trajectory 1 B with 1.0 Kilogram

Payload 4-46

4.34. Firing of Neural Networks during Trajectory 1B with 2.0 Kilogram

Payload 4-47

4.35. Firing of Neural Networks during Trajectory IC with 1.0 Kilogram

Payload 4-48

4.36. Firing of Neural Networks during Trajectory 1D with 2.0 Kilogram

Payload 4-49

4.37. Firing of Neural Networks during Trajectory IA with 0.0 Kilogram

Payload 4-50

4.38. Firing of Neural Networks during Trajectory 1C with 0.0 Kilogram

Payload 4-51

A.1. The Inverted Pendulum A-3

A.2. An Inverted Pendulum Control System A-4

ix

Figure Page

A.3. An ADALINE A-5

A.4. MURPHY's Physical Workspace A-6
A.5. MURPHY in Action A-7

A .6. A Diagram of INFANT Topography A-9

A.7. Sketch of Circular Reaction Anatomy A-10

A.S. Experiment Setup of INFANT A-l

A.9. Sensor Field Cross-section A-12

A.10.Forklift Test Setup A-12

A. 1 IISystem Cont roller Training Setup A- 16

A.12.Iniverse Kinematics Training Setup A-16

B.I. Temporal Multilayer Perceptron Diagram B-2

C. 1. Neural Net Firing Pattern when Subtracting Threshold C-3

C.2. Neural Net Firing Pattern -fter changing to Threshold Addition C-4

C.3. Nuural Net Firing Pattern showing Bad Net Firing -5

C.4. Neural Net Firing Pattern showing Bad Net Firing ('-6

C.5. Neural Net Firing Pattern after Replacing Bad Net C- 7

x

List of Tables

Table Page

4.1. PD Feedback Gains 4-2

4.2. Payload Conditions 4-4

4.3. Trajectories used for Testing 4-4

4.4. Standard Deviation Testing Results 4-9

Xi

AFIT;GEENGi/89D-20

Abstract

A new form of adaptive model-based control is proposed and experimentally

evaluated. An Adaptive Model-Based Neural Network Controller (AMBNNC) uses

multilaver perceptron artificial neural networks to estimate the payload during

high speed manipulator motion. The payload estimate adapts the feedforward

compensator to unmodeled system dynamics and payload variations. The neural

nets are trained through repetitive training on trajectory tracking error data. The

AMBNNC is experimentally evaluated on the third link of a PUMA-560 manipula-

tor. Tracking performance is evaluated for a wide range of payload and trajectory

conditions and compared to a non-adaptive model-based controller. The superior

tracking accuracy of the AMBNNC demonstrates the potential of the proposed

technique.

xii

Payload Invariant %Control via Neural Networks:

Developnyent and Experimental Evaluation

I. Introduction

1.1 Motivation

One problem in robot control is how to obtain accurate high speed trajec-

tory tracking when the payload varies throughout the performance of the task. A

solution to the problem is one requirement for realizing a manipulator capable of

duplicating human performance. A manipulator with the ability to emulate hu-

man performance is one prerequisite for achieving Air Force Robotic Telepresence

program objectives.

1.2 Objective

A research initiative of the Air Force Institute of Technology (AFIT) robotics

research program is the development and evaluation of control methods which may

lead to achieving human arm performance. Current research is centered on develop-

ing techniques that are robust and quickly adapt to payload variations [43,45]. An

adaptive model-based control structure provides the framework for that research.

The goal is to seek out a combination of an adaptive feedforward compensation

approach and a robust feedback method which provides the best possible perfor-

mance for a vertically articulated manipulator operating in an uncertain payload

environment.

Adaptive feedforward compensation research is concentrated on looking at

techniques to identify and estimate payload variations during task performance.

1-1

System dynamics are updated with the payload estimate to produce adaptive feed-

forward compensation during manipulator motion. In a previous effort a stochastic

multiple model adaptive estimation scheme was used to estimate the payload mass

The payload mass estimation problem can be posed in pattern recognition

terms. Neural networks can successfully solve various pattern recognition prob-

lems. If neural networks can quickly and accurately recognize robot tracking error

patterns a a function of payload variation, they may provide performance superior

to stochastic estimators.

The objective of my thesis research is twofold:

* to develop a mechanism employing neural networks capable of estimating a

payload mass value from robot trajectory tracking error data, and

* to integrate the neural network payload mass estimating mechanism into an

adaptive model-based control structure.

Subsequent experiments will explore the potential performance improvement using

the resulting adaptive controller. All performance experiments will be performed

on a PUMA-560 robot. The principal end product is the realization of a neural

network technique for achieving autonomous adaptation of a robot manipulator to

payload variations.

1.3 Problem Statement

The mechanism responsible for adapting to payload variations throughout

task performance i'i the control system. Controlling a robotic manipulator is com-

plicated by the coupled and nonlinear nature of robot dynamics. Contemporary

industrial controllers model each joint as linear second order systems, and use

speed and payload restrictions to bound dynamic coupling effects. The resulting

critically damped systems are able to operate to about 60 percent of their full

1-2

electro- mechanical potential [42). Including dynamic parameters in the controller

design reduces speed and payload limitations [45,6,34).

Model-based control provides excellent trajectory tracking performance when

accurate payload information is available [76]. However, payload variation informa-

tion may be unavailable, unreliable, or unpredictable in intelligent robotic applica-

tions. Adaptive model-based control schemes attempt to provide accurate payload

information via some adaptation technique. Two adaptation approaches used in

current research to estimate payload parameters for adaptive robot control are

based on the Lyapunov theory and Multiple Model Adaptive Estimation (MMAE)

[72,70]. The MMAE adaptation technique uses a series of Kalman filters whose

plant models span the payload parameter space. A bridge exists between Kalman

filter techniques and the backpropagation training method used with multilayer

perceptron neural networks [66]. The Lyapunov adaptation method is based on

the premise of non-increasing energy in a mechanical system which guarantees con-

trol stability and implies the steady state errors go asymptotically to zero. Neural

networks are globally Lyapunov adaptive systems [10].

Artificial neural networks (ANNs) are simplistic models of anatomical, phys-

iological, behavioral, and cognitive aspects of animal biological processes [11,16].

Neural networks have shown potential for speech, vision, motor and motor-sensor

control, tactile control, and other attributes required by robots to emulate hu-

mans. Previous use of neural networks to improve manipulator path following per-

formance concentrated on replacing either the entire control system or the feed-

forward controller and/or prefilter with neural networks [10,21,25,30,56,38]. No

previous network applications have considered payload variation. Many of these

previous applications use the ability of neural networks to recognize patterns in

data. The payload estimation problem can be posed in pattern recognition terms.

This motivates the question: If the neural nets can quickly and accurately recog-

nize the robot trajectory tracking position error patterns, as a function of payload

1-3

.ariatior, can they provide performance superior to u;ther e.timation schemes?

Choosing a neural network involves answering several qt, estions, "Can a net-

work be found that can perform the required task., and is it available?" In addi-

tion, "If a network can not be found, can one be designed to perform the required

tasks?" The answer to these questions is based primarily on the local availability,

proven previous applications, and prior performance of the various neural network

types. Once a particular network topology is chosen, the next task is developing

a strategy to present trajectory tracking error data to the chosen neural network

structure. The design should enable the neural nets to employ their proven clas-

sification abilities to determine the payload mass parameter from tracking error

information patterns

The model-based controller tracking performance with full payload informa-

tion is known [431; therefore, any unmodeled dynamic variations are assumed to

be due to payload variations. Knowledge of the robot properties allow my research

to focus on the neural network estimation scheme and explore the robustness of

using neural networks to estimate the payload mass parameter. Therefore, once

the neural networks prove able to detect the payload from trajectory error informa-

tion, the search focuses on finding the ANN structure characteristics which yield

the best training and potential operation performance. The criteria used to decide

upon a specific neural network arrangement is which composition gives the highest

accuracy and lowest error at the end of training. The next hurdle is to integrate the

neural network payload estimation scheme into an adaptive model-based control

structure.

The integration is dictated by the: chosen form of neural network, trajectory

error data input method, and the manner of presenting the payload estimate to the

control system. Once the synthesis is accomplished, experiments and analysis to as-

certain the performance potential of the new technique must be performed. Exper-

imental evaluation of known model-based controller performance versus adaptive

1-4

model-bused control schemes is vital for realistic comparisons. Neural network per-

formance as part of an adaptive model-based controller must be compared against

the known model-based controller performance around which the adaptive con-

troller is built.

1.4 Method of Approach

The multilayer perceptron (MLP) artificial neural network is chosen priniar-

ily due to local availability and existing resident knowledge of the net structure

and operation. For the same reasons the backpropagation method is used to train

the neural nets. There are no temporal based neural networks readily available and

time constraints precluded attempting to implement one. The multilayer percep-

tron structure is commonly used for static classification problems. The application

being considered is the dynamic movement of a PUMA-560 joint three.

The PUMA-560 is used as a case study because: the PUMA robot is avail-

able, the dynamics are well known, and it is a good case to study for Air Force

applications. Competent experimental studies of adaptive robot control designs are

scarce; however, in the following development all design and analysis work is based

on experimental data. Therefore, only one joint of the PUMA is used as a starting

point. A performance baseline trajectory for AFIT robot control research moves

joint three through 105 degrees in 1.5 seconds. The trajectory is sampled every

4.5 milliseconds yielding 334 sample periods. Using only joint encoder position

information yields one desired and one measured position input per manipulator

joint for input to the neural networks at each sample period.

Two possible methods using multilayer perceptron neural networks are to

use one net for the entire duration of the trajectory or use separate nets arrayed

throughout the trajectory time period. Using one net is not feasible since the

net would require 668 input nodes for a sampling rate of 4.5 milliseconds during

a 1.5 second trajectory. How to obtain a temporal payload estimate from such a

1-5

structure is unknc1';n. The other possible approach uses individual neural networks

for each sample period throughout the trajectory. Using an array of individual nets

is feasible because each neural net uses standard MLP feedforward operation. Also,

the approach lends versatility to the final structure because the number of nets used

and the rate of sampling the nets are easily varied.

Before going further in the design process, actual tracking position error data

is analyzed to 'etermine the viability of using only position error information with

the neural ne, xvorks. However, the error data distribution properties indicate the

data portrays accepted pattern recognition information traits such as separation

of characteristics in the position error parameter space. PUMA-560 runs are made

with varions payloads and controller payload information to make up feature vector

training sets. A feature vector is a vector made up of characteristic elements

(desired and actual joint positions) that identify a particular class of a parameter

(payload) is a given parameter space. The payload position is known with respect

to the PUMA-560 base reference frame. Payloads consit of three circular brass

disks with 15.24 centimeter diameters representing one, two, three kilograms.

During these experiments payloads from zero to three kilograms are attached

to the sixth link mounting flange of the PUMA. The payload is a function of

ten variables. The variables represent the total mass, position of the mass with

respect to the robot base reference frame, and inertia matrix terms [48, pages 407-

419]. However, prior experimental evaluations have shown that the point mass

assumption is valid for the first three links of a PUMA-560 manipulator. Therefore,

the payload mass is assumed to be a point mass throughout the experiments and

analysis [45].

Payload identification tests performed during training which yield accuracy

and mean squared error measurements are used to track neural network training

progress. The nets are considered trained when the accuracy and error outputs

stabilize to constant values. The ability of the neural networks to train is validation

1-6

of the initial hypothesis that neural networks are able to detect the payload class

from trajectory error data. As an initial development neural nets are trained for

every ten trajectory sample periods.

To use the neural nets for on-line opezation the nets are first loaded into their

proper arrays during system initialization. Next, the position error information is

presented to the nets to obtain a payload class decision. The third task is to be

able to use the neural network payload decision to update the system dynamics

information during on-line operation.

For each chore in the preceding paragraph, a simulation module or program is

developed that enables troubleshooting and testing for proper function operation.

Once all three functions are working individually they are incorporated into a

simulated manipulator environment. They are tested in simulation to work out any

problems not apparent during individual module testing. Following demonstrated

successful loading and feedforward operation in simulation, the individual modules

are integrated into the operational robot control environment.

After working out any remaining integration problems, the new adaptive

model-based controller using neural networks as the adaptation mechanism is ready

for experimental evaluations. Initial experiments concentrate on trajectory track-

ing and final position error performance of the adaptive versus the known non-

adaptive model-based controllers. In addition, performance repeatability is tested

by making ten manipulator runs with each payload variation.

For intelligent robotic applications the trajectory may not be known with

certainty. The neural nets are trained on only a single trajectory. However, a

modification is made that enables the new adaptive controller to be initial position

and trajectory independent. Before being presented to the neural networks for ei-

ther training or feedforward operation the position data is normalized around zero

using means and standard deviations computed during training data formulation.

The means and standard deviations are also loaded during system initialization.

1-7

That modification adjusts the means to the position of the manipulator prior to

manipulator motion. The adjustment is experimentally shown to allow the manip-

ulator to operate over trajectories with which the neural nets are not trained. The

balanice of the experiments focus on looking at trajectory tracking performance

on a range of alternative trajectories. These experiments include: sample ratc

variations, payload range tests, and different methods of presentinlg the payload

estimate to the system dynamics.

1.5 Thesis Contributions

Development and experimental evaluation of a new approach to adaptation

to payload variation during high speed robot motion is the principle thesis achieve-

ment. An accomplishment central to achieving the adaptation ability is the de-

velopinent and experimental verification of a technique using artificial neural net-

works to detect and identify payload mass parameters from manipulator trajectory

position error data. A Neural Network Payload Estimator (NNPE) and Adaptive

Model-Based Neural Network Controller (AMBNNC) are the prototypes developed

as vehicles to validate the propescd techniques.

Software and hardware tools required to support current and future research

were design and either programmed or made. The software tools enable the quick

transition of neural net weights from the training environment to on-line operation.

The hardware tools that were designed and obtained are the masses and various

attachments used to attach the masses at different locations and distances with

respect to joint three.

Analysis of experimental results indicate neural networks are able to deter-

mine payload mass parameters from trajectory tracking error information. As part

of an adaptive model-based control structure, neural networks are able to quickly

and accurately determine the payload mass parameter during high speed manipula-

tor motion over a range of trajectories, sample rates, and payloads. These findings

1-8

demonstrate the potential of the NNPE to provide the quick payload adaptation

required for human arm emulation.

1.6 Organization

The balance of the thesis consists of four chapters and three appendixes.

Chapter 2 sketches the information reviewed in a manner that takes one through

the progression of thought used to discern the concept for the thesis. Chapter 3

reveals the development of the Neural Network Payload Estimator and the Adap-

tive Model-Based Neural Network Controller. The experimental evaluation of both

mechanisms is the subject of Chapter 4. Chapter 5 summarizes the experimental

results so as to shed light on their meanings to the thesis goals and future research.

The appendixes complement or extend the thesis substance.

Appendix A completes a comprehensive review, began in Chapter 2, of how

neural networks are being applied in robotics research. Appendix B proposes a

temporal implementation of the multilayer perceptron structure and includes a

modified backpropagation training algorithm along witb usage discussion. Ap-

pendix C presents some of the troubleshooting done to resolve problems encoun-

tered during the research. All code and additional experimental data is located in

Technical Report ARSL-89-12 [32].

1-9

II. Background InformatwN

2.1 Introduction

Development and evaluation of artificial neural networks and robot control

techniques are areas of active research. Studies into using neural networks to solve

robot control problems are beginning to emerge. To appreciate a fresh approach to

a robot control problem requires looking at: the problem, strategies currently used

to address the problem, and the new method. The problem being addressed is how

to estimate an unknown and/or varying payload mass during high speed robot

motion to provide payload invariant gross motion trajectory tracking. Current

methods directed at the problem use various parameter estimation techniques to

determine the payload mass from one or more sensor outputs. The new technique

uses neural networks to estimate the payload mass parameter using trajectory

position errors derived from joint encoder measurements. To present a foundation

from which to understand the new method, the following discussion focuses on

reviewing artificial neural networks, robot control, parameter estimation, pattern

recognition, and current applications of artificial neural networks to robot control.

2.2 Neural Networks

The application of existing neural network models to various computational

problems is an active area of research. The attractiveness of neural networks

stems from their many inherent characteristics, including fault tolerance, the abil-

ity to process many hypotheses at the same time, and their ability to learn from

and adapt to changing situations [49]. Artificial neural networks (ANN) model

anatomical, physiological, behavioral, and cognitive aspects of animal biological

processes [11,16]. The models relate respectively to the topology, node characteris-

tics, training, and learning aspects of the various neural models [49]. Hecht-Nielson

estimates there are over fifty different types of neural networks [26]. Current efforts

2-1

in designing artificial neural networks are based on modeling observed behavior of

biological neural systems. Hecht-Nielson states there are 47 identified distinct

traits of human behavior and current ANN architectures use at most five or six of

them !26].

Some ANN architectures are based on the observed operation of single neu-

rons. Figure 2.1 shows one example of a biological neuron and Figure 2.2 depicts

its electrical circuit analog (an artificial neuron). On the simplest level (,peration

of the two systems is similar. Both receive inputs from many other processing ele-

ments and yield a single output based on some function of the inputs. Sine current

artificial neural network models consist of layers of artificial neurons operating in

parallel. Figure 2.3 shows a simple Neural Network structure. The bottom layer

consists of the network input nodes. The next two layers are called hidden laycrs.

The top layer contains the output nodes. An existence proof by Kolnogorov states

that a three layer network (two hidden layers) with N(2N ,- 1) nodes can compute

any continuous function of N variables !49. page 18. Therefore, most applications

use two hidden layers.

Algorithms and circuits are designed to perform the functions specified by

models. Development of neural network models are based on how biological neural

systems appear to work. The ability of an algorithm or circuit to fully duplicate

the performance of the modeled system depends on the model accuracy. Model

accuracy is directly related to the understanding of the system being modeled.

Presently, a rudimentary understanding of neural system behavior is emerging.

Patricia Churchland, in an article on perspectives on cognitive neuroscience. aptly

states the situation:

Even if we could simulate, synapse for synapse, our entire nervous sys-
tem, that accomplishment, by itself, would not be the same as under-
standing haw it works. [13j.

2-2

SYNAPSE

DENDRITE

Figure 2.1 A Biological Neuron '141

To better undcrstand the operation of an artificial neural network the next two

sectionls cover two processes modeled oi one current understanding of biological

ncural hetiavior. Presented first is the operation of the feedforward algorithm of

a multilaver perceptron (MLP) neural network. Feedforward operation is followed

by a look at the Back-Propagation training algorithm. Both developments can be

found in nany references 49,65,74,4,67,38]. The equations covered are out of An

Inlrodtition to Computing with Neural Nets by Richard P. Lippmann 149).

2.2,1 Neural Network Operation The general feedforward operation of an

artificial neural network is illustrated in Figure 2.4. At each node in the figure, the

weighted inputs to a nodes are summed with the node threshold and then passed

through a sigmoidal nonlinearity. The node output is used as either an input to

each node in the next layer of nodes or as an output of the neural net. In some

applications the input and output processes at each node are quite complex and

consist of complicated mathematical representations. For the example shown in

2-3

-0,I I i i

Wk

SYNAPSE

T-RESHCLD iHRESO;4LD

Figure 2.2. An Artificial Neuron [141

Figure 2.4. the node operation is governed by:

y f E i, 4-) (2.1)

where:

y y is th output of the node,

* n is the number of inputs to the node,

x ., is the ith node input.

* w, is the ith input weight, and

* 0 is the node threshold.

Each node's output function f(e) is the sigmoidal function in Equation 2.2.

f 1 + e (2.2)

During operation, feature vectors are presented to the neural network as

inputs. The outputs are the net decision as to the class represented by the input.

For the neural net to indicate the correct class, the network must be trained with

a representative sample from the classes from which the net will make decisions.

2-4

Output layer

Hidden layer two

Hidden layer one

X1 X2 X 3 Input layer

Figure 2.3. A Simple Artificial Neural Network Structure (75]

2.2.2 Neural Network Training One common algorithm for training multi-

layer perceptrons is Back-Propagation, developed in 1974 by Paul J. Werbos for

his Harvard PhD thesis, Beyond Regression: New Tools for Prediction and Anal-

ysis in the Behavioral Sciences. The method is currently recognized as either the

Generalized Delta Rule or Back-Propagation (49].

To train a multilayer perceptron using the Back-Propagation algorithm the

weights are initially set to random values. Next, vectors consisting of a feature

vector and the desired output are presented to the network. The output of each

node is governed by the sigmoidal:

1
fr)- 1 + e-(") (2.3)

where the activation function, r7, is chosen to facilitate searching the feature space

[64]. The value of 77 is application dependent [3]. The difference between the actual

and desired network output is an error signal used to adjust the weights.

2-5

X1 Y2 8 4

X22

03

Figure 2.4. Multilayer Perceptron Feedforward Operation Flow Diagram

Weights are changed using the eqt ation

wij(t + 1) = w,(t) + i, + ,a(w,,j(t) - t,7, (t - 1)) (2.4)

where:

* wij is the weight between the lower layer's ith node and the next layer's jth
node,

• X is the training rate,

i , is the output of the lower layer's ith node,

* 6j is the error term for node j, and

* a is the training momentum factor,

The training momentum factor, a number between zero and one, is used to prevent

being trapped in a ravine crossing the weight space by determining the djirection

to take with the next training step [67). The training rate X is a number between

zero and one used to indicate the step size to use during training [67).

For all nodes except the output nodes 6, is computed by

bj = ,(1 - ;j) (bkw,k) (2.5)
k

2-6

where -j is the node j output, and the summation is over all the previous layer

nodes. For the output nodes bj is determined by:

y = y(1 - yj)(dj - yj) (2.6)

Here yj is the actual and dj is the desired node j output. As each training vector

is applied to the network, each connection weight is recursively updated from the

output layer towards the input layer using the criteria presented above. Each node

threshold is adjusted in a similar manner. When the weights and thresholds stabi-

lize for input feature vectors representing all the classes, the network is considered

trained and every weight and threshold is fixed. The previously outlined feedfor-

ward operation is used with the trained network for classifying unknown feature

vector inputs.

2.2.3 Why Neural Networks? Neural networks are successful in pattern be-

havior recognition applications such as speech and vision processing [79]. Many

of the parameters required for compliant motion control and control in uncertain

environments can be determined from current sensor information using pattern

behavior recognition techniques. Parameter knowledge improves performance of

robot control systems [41,76,62,57]. Application of artificial neural network pat-

tern recognition techniques to intelligent robot control problems may yield realistic

solutions to complex problems. The potential performance improvements of using

pattern recognition techniques via neural networks for robot control are unknown.

2.3 Robot Control

2.3.1 Introduction Over 40 years ago the scientific world was shocked to

rediscover that feedback control systems exist in nature. The feedback loop was

"identified in society, men ,animals, and machines" [58]. Today, the ontrol system

is at the core of intelligent robotic systems research and development. Apart from

2-7

a robot's physical design constraints, the control system determines the manipula-

bility and tasks the robot is able to perform.

2.3.2 Background Information The physical design of an industrial robot

is determined by the task(s) it will perform. Robotic manipulators are typically

made up of mechalical links put together with rotary and/or prismatic joints. The

number of degrees of freedom (DOF) is one measure of a robot's manipulability.

Three positional DOF define the manipulator workspace, and three orientation

DOF determine the ability to align the end effector (gripper, tool otc.). Redundant

links or joints are added to increase strength or rangc; however, they may not add

to manipulator mobility. Mobility is a measure of how many of the positional

and orientation degrees of froedom are actually available in a given manipulator

structure. Therefoie, the ability of the manipulator to position and orientate the

end effe,.or is directly related to the nu.mber and structure of the manipulator's

mechanical links and joints. Serial and/or parallel mechanical link configurations

are used depending on the planned tasks.

A serial link manipulator is shown in Figure 2.5. It's defining criteria is that

each actuator is either at or associated with one DOF or joint (711. Serial link

designs are typically used in applications where a relatively light tool is used, such

as spray painting automobiles. Parallel link designs are more applicable to heavy

lifting jobs such as lifting and placing loaded pallets. A parallel actuated arm can

be identified by two or more serial chains connecting the base either partially or

fully with the final link (71]. A manipulator with a parallel linkage is presented in

Figure 2.6.

Robot drive systems use electric, pneumatic, and/or hydraulic actuators.

The actuators deliver the drive to the joints directly or use a gear train and/or

belt system. To perform a given task a device called an end effector is attached to

the last link. If the task involves grasping and holding objects it is called a gripper.

2-8

Link 2

Jointz 6

Link I A

Joint IJon3

Figure~ ~ ~ ~ ~ ~~~~~Ln 4..ASra ikMnpltr UA[0 ae8

An end effector designed to perform work is called a tool [42].

The mathematical equations describing the motion of an individual link are

established in the mechanics of rigid bodies. For a single link these equations

of motion are able to be represented by a linear differential equation. However,

when the equations of motion are expanded to include several connected links, the

differential equations used to describe the motion become complex, nonlinear, and

coupled. These equations of motion become the basis for the design of manipulator

control systems. Conventional approaches to formulating the dynamic equations

of motion are based on Lagrange-Euler and Newton-Euler equations of motion [20,

page 82]. The Lagrange-Euler equation is [42]:

An n - deigL i = 1, 2,...,n (2.7)

2-9

Th mahmaia eqain decibn th moio onf an iniida lin arei

Parallel N N.
Linkage

Figure 2.6. A Parallel Link Manipulator [60, page 39]

where:

* L =total robot arm kinetic energy K - total robot arm potential energy P,

* qi =generalized robot arm coordinates,

q, =first derivative in time of the generalized robot arm coordinate, q,

* ri =generalized torqueiforce applied to joint i.

The most common generalized robot coordinate system is the Denavit-Hartenberg

coordinate representation. The Denavit-Hartenberg system uses matrixies to de-

fine the translational and rotational relationships between adjacent links [20). For

an excellent presentation of the Denavit-Hartenberg coordinate system and how to

2-10

establish one for a given manipulator see ROBOTICS: Control, Sensing, Vision,

and Intelligence by K. S. Fu, R. C. Gonzalez, and C. S. G. Lee [20].

Using the Lagrange-Euler formulation and including terms for an external

payload the equations of motion for a manipulator become [76]:

NT(t) = [D(q,a) + N 2 M]4 + h(4, q,a) + N 2 Bm4 + r, + g(q,a) (2.8)

where:

9 n =the number of links of the manipulator;

* q, , = n-vectors of joint angles, velocities, and accelerations, respectively;

* a rn-vector of the unknown load parameters;

N n x n diagonal matrix of gear ratios for each joint(r velocity);likvelocity

* D(q, a) = n x n matrix of manipulator load and position dependent inertias;

M M = diagonal n x n matrix of actuator inertia terms;

* h(4, q, a) = n-vector of centrifugal and coriolis torques;

Sr, = n-vector of static friction torques;

SBm = n x n diagonal matrix of damping coefficients;

* g(q, a) = n-vector of gravity loading terms; and

* T(t) = n-vector or joint motor torques.

2.3.3 Current Directions in Robot Control Research The role of the robot

control system is to maintain a desired response throughout the performance of

some function. Robot control is complicated by the extensively coupled nonlinear

nature of robot dynamics. Contemporary industrial robot controller designs at-

tempt to bypass manipulator dynamic parameters by considering each link or joint

as a linear second order system. Dynamic coupling is treated as a disturbance

and is bounded by using speed and payload restrictions. The result is a critically

damped system capable of achieving perhaps 60 percent of it's electro-mechanical

potential [42].

2-11

Many of the efforts to improve the capability of robotic systems focus on

incorporating knowledge of the manipulator dynamics into the controller design. A

controller designed with this knowledge is able to achieve greater speeds and carry

heavier payloads. Inclusion of manipulator dynamic parameters into controllers is

possible due to the advances in computational power. Knowledge of the parameters

enables the controller to compensate for system nonlinearities and coupling while

performing a given task.

Current research is involved with developing techniques to control manipu-

lator motion when knowledge of manipulator parameters is unknown or uncertain.

Many schemes have been proposed that tackle the problem from differing perspec-

tives. Fu, Gonzoles, and Lee categorize them as joint motion controls, resolved

motion controls, and adaptive controls [20, page 2023. The balance of the section

will highlight a blend of the joint motion controls and adaptive controls techniques

known as adaptive model-based control. Adaptive model-based control is cho-

sen due to the experimentally proven ability of model-based control methods to

improve tracking accuracy over high speed trajectories [5,46]. Furthermore, com-

bining proven performance with the facility to adapt to the task and environment

is crucial when addressing intelligent robotic applications.

2.3.4 Adaptive Model-Based Control Model-based control schemes attempt

to compensate for dynamic nonlinearities and modeling discrepancies by using feed-

forward dynamic compensation and feedback techniques. Feedback techniques seek

to eliminate disturbances caused by modeling inaccuracies [41,33]. Feedforward

dynamic compensation tries to eliminate perturbations caused by known dynamic

interations of gravity, coupling torques, friction, centrifugal and coriolis forces, and

payload information. Compensation is achieved by producing nominal feedforward

torques which locally linearize the plant so that a classical feedback technique can

asymptotically drive the error to zero. Figure 2.7 diagrams a typical model-based

control system.

2-12

9,1 I 9-d FEEDFORWARD T
qdrlI) YNAMIC 4- ARIM

, OMlPENSA'J'ION

Figure 2.7. Model-Based Control System Block Diagram

Model-based control systems provide excellent trajectory tracking perfor-

mance when accurate payload information is available [41,76]. However, lack of

accurate payload information causes serious degradation of tracking accuracy [43].

For intelligent applications, payload information may be sparse or nonexistent.

Also, the control system must be able to adapt to variations in payload information

throughout the performance of any task. These are reasons for the development

of adaptive model-based control schemes.

Adaptive model-based control schemes seek to provide accurate payload in-

formation via some adaptation technique. The adaptation techniques rely on

payload parameter estimation schemes which use position, velocity, acceleration,

or other types of available sensory information. Payload parameter estimation

2-13

techniques are usually based on least-squares, stochastic, or Lyapunov methods

[47,72,521. Assuming knowledge of all parameters of each manipulator link, the

task is to estimate the parameters of an external payload and incorporate the

estimate into the manipulator dynamic equations of motion. The estimated pa-

rameters are included in the equations of motion as indicated in Equation 2.8 by

the variable a(t). Ways of estimating parameters for an adaptive model-based

controller, illustrated in Figure 2.8, are covered next.

Od FEEDFOFEEDBACK

-- COMPENSATOR ROBOT :

ESTIMATOR FEEDBACK
COMPENSATOR

e 7

Figure 2.8. Adaptive Model-Based Controller Block Diagram

2.3.5 Estimating Parameters The objective of all robot parameter estima-

tion methods is to enable an adaptive controller to achieve global convergence for

all desired initial conditions and trajectories. Most methods of estimating robot

parameters rely on a form of least squares computation [78,9,7,6,55,27]. An ex-

2-14

cellent review of the least squares method of estimation is found in reference [471.

However, standard least squares techniques have many pitfalls when used in on-line

applications.

Standard least squares techniques suffer from asymptotic convergence and

the inabihty to adapt to quickly changing situations [47]. The inability to adapt

is due to their gain going quickly to zero. Also, standard least squares techniques

require linearization of the parameters about some nominal values which may be

either guessed at or chosen from experience. However, experience may not suffice

when faced with a novel situation. An area of continuing research is improving

estimation techniques to overcome some of the least squares technique fallacies.

Some researchers use a gain resetting method in an effort to improve the

least squares facility to handle system perturbations [22,23]. The gain resetting

scheme's shortfall is that all the past experience contained in the controller gain

matrix is lost when the gains are reset. An improvement is to use a forgetting

factor [271 that causes the past controller gains to die out at a predetermined rate.

However, the forgetting factor is usually found by trial and error or 'informed'

guessing. Li and Slotine improved the forgetting factor method by implementing a

gain-adjusted-estimator (GAF) that yields exponential convergence in simulation

[47]. The GAF estimator uses the norm of the gain matrix, which does not go

to zero, to adjust the evaluation of the estimator error. The GAF estimator is a

promising linear estimator.

In control systems engineering the Kalman Filter is considered the premier

linear estimator.

It combines all available measurement data, plus prior knowledge of the
system and measuring devices, to produce an estimate of the desired
variables in such a manner that the error is minimized statistically [53,
volume 1, page 5].

2-15

The advantage of using Kalman filters is due to their ability to account for imea-

surement and system noises. The primary disadvantage for on-line use is the

computational loading, especially for the extended Kalman filter. In addition, the

choosing of the filter gains is still considered by many to be a 'black art' 151J. One

method of avoiding the need for an extended Kalman filter is to use an array of

linear Kalman filters that span the given parameter space. The technique is known

as the Multiple Model Adaptive Estimator (MMAE).

Application of MMAE techniques to robot control problems is an ongoing re-

search effort at AFIT. Larry Tellman successfully combined a MMAE with a model-

based controller to form an adaptive model-based perturbation controller 276]. In

operation, manipulator trajectory position error characteristics are matched to a

MMAE Kalman filter tuned to detect the error properties associated with a par-

ticular payload variation. The payload estimate is used to update the system

dynamics information during robot motion.

The above approaches yield a specific value for the payload parameter. Other

adaptive control methods use an indirect indication of the payload parameter. One

technique based on Lyapunov theory is the Model Reference Adaptive Controller

(MRAC) which compares the actual position, velocity, and/or acceleration with a

reference model. The payload estimate is embedded in the differences between the

actual and reference model outputs which are used to adjust feedback loop gains.

The closed-loop control system is guaranteed to be asymptotically stable due to

the Lyapunov basis of the design. However, the MRAC is unstable in high speed

motion applications [37].

Limitations and possible improvements of the above techniques are explored

in several areas of current literature. One recent article by Gordon Kraft compared

a least squares control application, a Lyapunov based MRAC, and a neural net-

work based controller. Simulation results in the article indicate that each method

is good at performing some functions and poor in performing othtrs [37]. Another

2-16

investigator, Dennis Ruck, recently forged a bridge between Kalman filter tech-

niques and the backpropagation training method 1661. The use of neural networks

for ct ntrol applications is burgeoning. Current studies focus on the ability of neural

networks to learn and recognize patterns in control structures and sensory infor-

mation. Therefore, before launching into how neural networks are being studied

for robot manipulator control, a review of pattern recognition is presented.

2.4 Pattern Recognition

2.4.1 Introduction Intelligent robots operating in autonomous applications

will be required to make decisions based on incomplete information and uncer-

tainty. Furthermore, the decisions must satisfy task constraints. In addition, there

are many tasks an autonomous robot must be able to do individually or all at

once. A representative sample of these tasks include: directional guidance, obsta-

cle avoidance, orientation determination, range finding, object identification, path

planning, and sensorimotor coordination (77,111. Pattern recognition or classifica-

tion will play a key role in the decisions made about given tasks.

Pattern recognition is identifying an object according to measurements of

the object's distinguishing features [29]. Several methods of performing pattern

classification exist in classical decision theory. The section covers the terminology.

basic approach, and an example of classical decision theory as apphed to pattern

analysis.

2.4.2 Background The terminology used within the pattern classification

field takes its cues from vision analysis terms. First, each measurement is a fea-

ture. Next, a set of n measurements becomes a point in an n-dimensional feature

space. Finally, a feature vector is formed by connecting the associated features.

Determining what features of an object to select for decision making is one key to

obtaining a meaningful decision.

2-17

The basic approach to pattern recognition starts by cLoosiIg (iscrimiuating

characteristics for each entity to be classified. Then the chosen characteristics are

measured and used to define class memberships. From statistics of each charac-

teristic feature, decision thresholds are established. These thresholds form regions

within the multidimensional feature space. One assumption is that feature vectors

of different class members form separate clusters in the feature space. Unknown

entities are classified by where their feature vectors map to in the feature space.

2.4.3 Classical Decision Theory In classical decision theory, the crux of all

decision making schemes is how to partition the feature space to provide for ac-

curate object classification. One simple method is known as the nearest-neighbor

classification. The method searche, the entire feature space and classifies the un-

known entity by the nearest example (neighbor) it finds to the object. Mathemat-

ically, if in a feature space for some feature F of some i and j,

iF., - X(< F,,, i - X for all m and n, (2.9)

then the unknown X is ascribed to class 1 [29, page 337]. The advantage of this

method is that clusters can have complicated shapes in the feature space. How-

ever, it is computationally intensive and cluster overlapping can reduce decision

accuracy. An example of a simple feature space is shown in Figure 2.9.

Several schemes are available that attempt to address the computational

and overlap problems. One method, known as nearest centroid classification, re-

duces the computational load by assuming the examples of each class form round

non-overlapping clusters. The centroid of the class the unknown feature vector

is nearest to then becomes it's classification. The method is often extecnded to

the use of probability density models for clusters of differing shapes to define a

class. When using these methods it is useful to choose geometrical shapes that

are mathematically tractable and adequately define the clusters. Neural networks

2-18

B B B F F F F
B B F F

BB B B F F F
B B B B B F

- B F F
B B F F F F

F F F F
B F F

B F F
B F F F

B

B = Basketball Players Weight

F = Football Players

Figure 2.9. A Simple Feature Space

are non-classical in that they form their own decision regions in the feature space

during their training.

2.5 Manipulator Dynamics Based Trajectory Control with Neural Nets

In manipulator trajectory control the idea is to use the neural network at-

tributes to improve the tracking of robot manipulators, particularly in circum-

stances of uncertainty in the task performance. Two principal approaches are

currently taken to apply neural networks to robot controllers. One approach is to

use the ANN as a high level controller in place of the entire controller. The other

method uses the ANN as a feedforward controller and/or prefilter, after teaching

it the inverse dynamics. The first example takes an information processing point

of view to develop a high level controller.

Bill Horne and M. Jamshidi use data representations to a Cerebellar Model

Articulation Controlltr (CMAC) to control a 1 degree-of-freedom gripper attached

to a Rhino XR educational robot [30]. They use three types of data represen" ttions:

2-19

position (between the gripper fingers), control movement (using duty cycle and

count parameters), and the relationship between position and control. Network

nodes are assigned to each position in the work space. The network is then trained

with a reinforcement method to move from one position to another using step

inputs. After training, the step inputs are used to move the gripper fingers. When

a move is commanded for which the system is not trained, a binary search tree of

preset relationships is used to perform the commanded position change. Figure 2.10

shows a representative portion of the binary search tree. Experimental results are

ambiguous. The authors conclude by suggesting refinements, such as improving

the position/ control relationship.

0- state.action-state
level 4 relabonsnip

level 3

level 2

level I

poSalion 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 1 5

Figure 2.10. Binary Search Tree (301

The majority of on going efforts in robot trajectory control focus on training

the neural network the inverse dynamics of the system over a representative range of

its operation and then using it as a feedforward controller/prefilter. Representative

2-20

of these efforts are Goldberg and Pearlmutter's use of a multilayer perceptron to

learn the dynamics of the CMU Direct Drive Arm II (21], Guez and Aimad's use

of a multilayer perceptron to solve the inverse kinematics problem for a two link

planar manipulator 1251, and Atkeson and Reinkensmeyer's use of an Associative

Cintc:t _drs~bl, Mo-morles (ACA !'I,' scheme as the feeduorward controller with

the MIT Connection Machine in simulating a planar two-joint robot and a running

machine F101.

A representative but novel method is currently under investigation by W.

Thomas Miller et al, at the University of New Hampshire [56]. They are essen-

tially piggybacking a CMAC network with a modified weight adjustment law onto

a constant gain industrial robot controller to adaptively enhance the trajectory fol-

lowing capabilities of a General Electric P-5 industrial robot. The system dynamics

involved are simplified by the parallel linkage and relatively low joint velocities of

the P-5 robot.

The CMAC functions as a feedforward controller in parallel with the fixed

plant. Slow speeds are used on moderately benign trajectories to evaluate the

system performance. The authors mention using this scheme for nonrepetitive

trajectories yet only test on repetitive trajectories. Hopefully, further system eval-

uation using nonrepetitive tasks will be forthcoming. The control scheme may be

useful on repetitive tasks in environments subject to small perturbations.

In an experimental application, Akin and Sanner of MIT applied neural net-

works as a prefilter as part of a Neuromorphic Pitch attitude Regulator of an Un-

derwater Telerobot [2]. The major problem encountered was the computational

loading when using a single microprocessor for the entire control scheme.

Extending the employment of neural networks to other parts of the control

system structure, F. Pourboghrat and M. R. Sayeh propose using two neural net-

works, one as a feedforward controller and another as an adaptive state feedback

controller. They state that "a feedforward controller, without any error feedback,

2-21

is not able to compensate for unpredicted disturbances" [61]. Initially presented

as a learning controller, they suggest that the feedback controller will adaptively

compensate for perturbations. Experimental verification was not accomplished.

Figure 2.11 gives a pictorial view of their proposed structure.

Figure 2.11. Hybrid Control Structure [61]

2.6 Summary

All of the above investigations are important to determine the potential track-

ing accuracy improvements from using neural networks for robot control. Control

problems that are able to be posed in pattern recognition terms may find a viable

solution using neural nets. One such problem is the payload estimation problem.

Presenting tajectory tracking error profiles to neural networks for use in identi-

fying payload mass parameter behavior is possible. Payload information obtained

using multiple model adaptive estimation schemes via Kalman filters improves ma-

nipulator performance. Using payload information supplied by neural networks in

place of other estimation schemes should produce a similar improvement in ma-

nipulator performance. Additionally, neural networks may be able to perform the

payload estimation function more efficiently than stochastic or least squares meth-

ods and do the estimation over a greater range of payload variations. To realize an

adaptive robot controller using neural networks as the adaptation mechanism, the

2-22

next chapter presents the development of a new method of using neural networks

to provide a robot controller with payload information during task execution.

2-23

III. The Appro ch Taken

As in many engineering solutions, a compromise is the final result.

3.1 A Beginning

Central to achieving a neural network payload estimator is determining if

an Artificial Neural Network (ANN) can identify a payload mass from trajectory

error information. The initial task is determining the type of neural network to

use. The available position information and how that data might be presented to a

neural network are only two factors to consider in deciding on a type of ANN. Once

a specific neural network type is chosen, the following is a list of issues needing

resolution.

* Can the selected ANN correctly identify the payload masses?

* What neural network size is required for a given range of payloads and posi-

tion data inputs?

* How is the correct size and/or structure determined?

a What is the best way to preseu, the position data to the nets?

* Is neural network training time an important consideration?

Once these issues are resolved the selected neural network must be fully trained

and tested.

For on-line use of neural networks in a robot controller, how to integrate the

neural network operations with the controller functions is the first consideration.

Related tasks include: loading the neural net weights during initialization, provid-

ing for their processes during on-line operation, and incorporating the neural net

payload 'stimate into the feedforward dynamics compensator during robot motion.

After achieving an on-line operational system the question of 'How neural networks

3-1

affect system performance?' must be answered. The following discussions describe

the developments and methods used to realize an operational adaptive controller

using artificial neural networks as the payload estimation mechanism.

Presented first is a technique that uses neural networks to provide a payload

estimate from trajectory tracking error patterns. Next, issues on how to present

the payload information to a robot control system are discussed. The chapter

culminates in an example adaptive controller realization by illustrating the devel-

opment of a direct adaptive model-based controller using neural networks as the

adaptation mechanism.

3.2 Neural Network Payload Estimation

Developing a Neural Network Payload Estimator (NNPE) requires looking

at the available sensor data containing trajectory tracking performance informa-

tion. Ignoring vision and tactile information reduces available information to joint

position encoder data. Trajectory tracking error is the calculated difference be-

tween the desired and actual position. However, is position error data suitable

for use with neural networks; are there patterns in the data neural networks can

learn? Experimental results given in the Chapter 4 indicate definite patterns exist

in manipulator trajectory error data. Therefore, desired and actual position data

is used to present deviations from the desired trajectory to the neural networks.

Other possible inputs, such as velocity and acceleration, are not addressed in the

development.

The multilayer perceptron (MLP) artificial neural network using backprop-

agation as a training method is used in the NNPE development. The multilayer

perceptron structure is chosen primarily due to local knowledge and availability of

the neural network. Multilayer perceptrons are inherently static systems. Previous

applications of neural networks iii robotics have been to static problems such as

a fixed background for visual systems, or fixed models and trajectories for inverse

3-2

kinematics applications. To apply a static structure to a temporal problem requires

adapting the structure in such a way that the abilities afforded by the mechanism

are used in a dynamic environment.

The study of the problem starts with looking at a high speed 1.5 second

trajectory which is sampled every 4.5 milliseconds and yields 334 sample periods

during the trajectory. Each sample period requires one desired and one measured

position input per manipulator joint. Several different ways of using the position

information with neural networks to identify the payload are possible. One method

is to use a single net trained over a given set of trajectories. To cover 334 sample

periods, one net would require a sum of 668 input nodes per joint, an unknown

number of hidden layer nodes, and however many required output nodes (depends

on how the parameter space is divided). Producing a usable output from the

net may not be possible due to the massive net size and temporal computation

problems within the net.

Another method of using the position data is to use nets at each sample period

of a set of trajectories. The nets would be trained with update period position data

and temporal information throughout the trajectories (see Appendix 2 for further

development of the idea). As an initial step towards realizing a temporal MLP,

one neural network is trained for each update period of a trajectory and sampled

at that time during manipulator motion. To cover 334 sample periods requires

using 334 individual nets with two input nodes per joint, a much smaller number

of hidden layer nodes, and the necessary output nodes.

Using the method of backpropagation training covered in Chapter 2 requires

a representative set of data with which to train the neural nets. The data set

must contain the actual and desired position information as well as the payload

class associated with the data. Additionally, positional variations occur whenever

a robot or machine is brought on-line or calibrated. Therefore, ten runs of the

manipulator are made for each trajectory and each known payload variation to

3-3

generate training data. Five runs are made with a calibration between each run.

The other five runs are made with one initial calibration to include the effects of

performing repetitive tasks. Included in the training data collection are sets of

runs where the controller is told a range of payload values other than the actual

payload. Giving the controller an incorrect payload value produces tracking error

information to use in training the nets to detect the actual payload from deviations

from the desired trajectory.

Neural networks are usually presented with linearly normalized inputs be-

tween zero and one or negative and positive one. However, the information con-

tent of one trajectory position data vector is small. Therefore, during formation

of training data sets the mean and standard deviation of all actual and desired

position data points at the individual time frame are computed. Normalization

around zero is achieved by subtracting the computed means from each position

value and then dividing by the standard deviation. Payload class information is

augmented to each training feature vector using 0.9 to indicate the desired neural

net class output with all other class outputs set to 0.1. These values are used for

indicating the class to the neural nets during training and are due to the use of

the sigmoidal nonlinearity (see Equation 2.3) in the operation at each node.

Training data sets covering representative sample times of a given trajectory

are used to find the neural net structure that works best with the trajectory position

information. The number of output nodes is set by the number of increments used

to divide the payload mass range. The number of input nodes is manipulator

dependent. Two nodes per manipulator joint are used to input the desired and

actual position data to the neural networks. After determining the number of

inputs and outputs to use, the design problem becomes determining how many

nodes to use in the hidden layers of a multilayer perceptron ANN.

Training accuracy and mean squared error results are used to track the train-

ing of the neural nets. Training results are generated at predetermined intervals

3-4

during training by testing the classification ability of the nets using the training

data as a test set. The criteria used to choose the net composition for use in the

payload estimation scheme is which design attains the highest training accuracy

with the least error over the majority of the trajectory training data sets. Neural

net 'fully trained' status is decided by either reaching a given limit on the num-

ber of training iterations or achieving a set level of accuracy and error. In many

cases the neural nets stabilize around local or global minimums before reaching set

training limits.

The ability of the neural networks to train proves their potential to dis-

cern payload information from trajectory tracking error information during on-line

operation. Another measure of neural network payload classification potential is

testing them using feature vectors not used during training. Accuracy and error

are calculated in the same manner as during training to allow direct comparison

of the results.

3.2.1 Presentation of Estimated Payload to a Controller Several schemes

of presenting the estimated payload to the control system exist. One method is to

update the payload value every time a new payload estimate is obtained. Upd ,'ng

the payload value with every estimate gives better tracking performance during

the initial transient portion of a trajectory but may create problems later in the

trajectory. The problems may occur because the neural networks are estimating

the payload variations. Thus, even with a payload, if the arm is correctly tracking

the desired trajectory the neural nets will indicate a payload of zero kilograms.

The incorrect payload information may prevent the control system from adapting

to an unanticipated disturbance.

Another strategy is to update the payload value only when a change in pay-

load is detected. Updating the payload only when a change from a current value

occurs is attract-.,e in that once an initial payload value is established, it is un-

3-5

changed unless the payload characteristics change. Computational loading is de-

creased and performance is increased. One drawback is that the controller will

never be told if the payload does go to zero kilograms.

Both of the above methods indicate a high confidence in the mass estimate. If

the confidence is low, then a sliding window method with a majority voting scheme

may provide adequate performance. However, there is an inherent lag in obtaining

the payload estimate that may be prohibitive for high speed applications. The

method where updates are performed only when detected payload values change is

the technique used during development and initial performance evaluations. During

later performance evaluations a compromise of the first two approaches is used.

3.3 Adaptive Controller Realization

The Neural Network Payload Estimator's (NNPE) sole purpose is to provide

usable payload information to assist a controller performing required tasks in un-

certain environments. The payload information is used to update thc model of the

system dynamics used by the dynamics compensator to compute the feedforward

portion of the commanded torque sent to the manipulator. Figure 3.1 shows the

placement of the NNPE in the structure of a model-based controller (MBC). The

control mechanism is called the Adaptive Model-Based Neural Network Controller

(AMBNNC).

The AMBNNC uses feedforward dynamic compensation and a Proportional-

plus-Derivative (PD) feedback loop. Using a PD feedback loop is used to facilitate

comparison of experimental results with previous AFIT research [76,68]. Including

terms for payload parameters, the feedforward dynamic compensation (rff) and

PD feedback loop (-rb) are described by

N~rf = (b(q,a) + NM]+ h(4,q,a) + N'Bq +,r. + (q,a) (3.1)

rb = K + Ke (3.2)

3-6

where:

* q, 4, 4 = vectors of joint angles, velocities, and accelerations, respectively;

* a = vector of the unknown load parameters;

* D(q, a) = matrix of estimated manipulator load and position dependent in-
ertias;

* N diagonal matrix of gear ratios for each joint ('T ° tO" ,oct.
Imk velocity

M Al diagonal matrix of actuator inertia terms reflected through the gear
train;

* h(q, q, a) = vector of estimated centrifugal and coriolis torques;

*B, = diagonal matrix of damping coefficients;

•r, = vector of static friction torques;

* 4(q,a) = vector of estimated gravity loading terms;

K, = vector of velocity gains;

Kp = vector of position gains;

* e - vector of position errors (qdeired - q). and;

Se - ()a vector of velocity errors.

The NNPE provides an estimate a of the payload parameter vector in Equa-

tion 3.1. The payload estimate is used to adapt the feedforward compensator to

payload variations. Since the payload estimation is driven by trajectory tracking

error AMBNNC is a form of direct adaptive control.

Figure 3.2 is an AMBNNC operational flow diagram. During system imi-

tialization the basic functions of providing power throughout the system, running

system operation checks, and calibrating the system are performed. During task

initialization the neural network weights, means, and standard deviations for each

time frame used during the trajectory are loaded into their respective arrays. The

means and standard deviations are the same ones computed during training set

formulation. Figure 3.3 shows the structure of the neural net arrays for intervals

spanning a given period of operation. As part of the task initialization the means

are adjusted for differing initial positions using the following two step process:

3-7

O._ FEEDFORWARD + 7

('~OMPENSATOR RBT;

rib

NNPE FEEDBACK
NNPE COMPENSATOR

Figure 3.1. Adaptive Model-Based Neural Network Controller

" the ca;,ulated initial position is subtracted from the initial position of the

trajectory that the nets were trained on, then

" the difference is subtracted from each desired and actual mean calculated

during formulation of the training data sets.

Using the above process enables neural nets trained using one trajectory and initial

position to be used for trajectories independent of the initial position. This is

experimentally validated in Chapter 4. Also, during task initialization, instructions

for task performance are stated, a value for the payload mass is given, and system

dynamics are computed.

Nominal dynamics information is used to initialize the feedforward dynamic

compenstin torques. During manipulator motion the sample time, and desired

and actual position information are presented to the ANN feedforward algorithm.

3-8

The sample time is used as a pointer to the set of weights to use in the neural

network feedforward operation. The position information is normaihzed and input

to the neural network. The decision of the net is indicated by the highest output

node which is translated into the associated payload class. The payload class is

used to either recompute or leave unchanged the mass parameters using a point

mass assumption to modify all payload parameters.

A compromise between two approaches is used to change the payload mass

parameters. For the early part of the trajectory, the mass parameters are recom-

puted every time the nets are used. For the latter two-thirds of the trajectory. the

mass parameters are only recomputed when there is a detected change other than

to zero. The compromise is due to the performance gained from each method in

differing payload and trajectory situations. Combining the two techniques forms

an adaptation mechanism within the controller that attempts to drive the trajec-

tory tracking error to zero irregardless of the payload. Adaptation is produced by

on-hne recomputation of system dynamics.

3-9

Start

Systenn * Power on

initilizaion System clecks
0 system calbrationi

Task * Load neural nets

0 Set initial conditions

1. Compute inta dynami

3.G oinitial position

Figuret 3.2. AM NN Cprt ompt Flow tiagramn

FC- . o o niia-psiio

I I I

a(i,) a(t.)

•q,

t4

Figure 3.3. Temporal Arrays of Neural Networks

3-11

..4 Summary

The first known development of a technique to estimate payload mass pa-

rameters from robot trajectory position error data using artificial neural networks

has been presented. Some ways of presenting the payload estimate to a robot

control system during on-line operation were covered. Finally, the formulation

of an adaptive model-based controller (AMBNNC) using neural networks as the

adaptation mechanism (NNPE) was realized. An experimental evaluation of the

AMBNNC performed on a PUMA-.560 manipulator along with other tests used to

make development decisions are presented in the following chapter.

3-12

IV. Experimental Analysis

4.1 Introduction

The goal of the following dialogue is to demonstrate and validate the ability

of an artificial neural network (ANN) to provide accurate estimates of payload

mass during high speed manipulator motion in uncertain environments. The true

test of the validity of a new development is experimental evaluation in a krown

environment. Accordingly, a profile of the experimental environment begins the

discussion followed by the tests that examine the ability of neural networks to

discern payload mass from trajectory error data. The subsequent section sketches

the forging of the Adaptive Model-Based Neural Network Controller (AMBNNC).

The balance of the chapter surveys the performance of the AMBNNC versus a

known single (non-adaptive) model-based controller (SMBC).

4.2 Experimental Environment

A PUMA-560 operating under the ARCADE environment [43] is the test

platform used to generate the neural network training data and perform subsequent

AMBNNC evaluations. ARCADE is resident on a VAXstation III (ROBBIE) and

uses both parallel and serial interfaces with the PUMA LSI-11/73 computer. A

DRVI1-J parallel interface is used to pass angular position information and motor

current information between the VAXstation and the LSI-11/73. The LSI-11/73 is

used only as a preprocessor. Device driver software is provided by VAXlab software

which is layered on top of the host VMS operating system [43].

The nominal dynamics of the PUMA-560 are well known along with the

dependence of tracking accuracy on payload information [45,43). The single (non-

adaptive) model-based controller (SMBC) evaluated in previous studies [43] is used

to generate the training data and provides a known baseline against which to

4-1

compare AMBNNC performance. The AMBNNC uses the same feedforward and

feedback algorithms as the SMBC except the Neural Network Payload Estimator

(NNPE) supplies the payload estimate required for adaptation. The Proportional-

plus-Derivative (PD) feedback loop gains (see Equation 3.2) used during testing

are tabulated in Table 4.2. Due to communication limitations, a maximum servo

rate of 4.5 milliseconds (222 Hz) is used throughout the evaluations except where

tests are performed to examine the affects of using a range of sample rates.

Neural network training is accomplished on a MicroVAX III using ADA soft-

ware written by Dennis Ruck [65]. The ADA software implement6 dhe backprop-

agation training algorithm given in Equations 2.3 - 2.6. Prior to training each

net is seeded with numbers from a random number generator, and the training

rate, q, and momentum, a, are set to 0.3 and 0.7, respectively. Upon reaching the

area of a stable minimum, a is reduced to 0.5 or 0.4 to enable finer searching and

convergence.

The ARCADE environment is modified to include algorithms for: loading

the neural net weights, means, and standard deviations; adjusting the means to

the computed initial position prior to arm motion; and performing the feedfor-

ward operations given in Equations 2.1 and 2.2. The algorithms are written in

FORTRAN and hosted on ROBBIE within the ensemble called Neuroboto.

Link i Position (Kp,) Velocity (Ku,)

1 640.0 72.0

2 1331.0 129.0
3 360.0 25.0

Table 4.1. PD Feedback Gains

4-2

4.3 NNPE Development and Validation

Initiai tests examine the dispersion of the PUMA link three trajectory error

data to determine the suitability of using the data with neural networks. Position

error is the calculated difference between the desired and actual position as given

in Equation 4.1.

e(t) = qd(t) - q(t) (4.1)

Position error and neural network training data are produced by moving

the third link of the PUMA through -105 degrees in 1.5 seconds from an initial

position of (-50, -90, 210) degrees. A minimum jerk trajectory generator is used to

calculate the trajectory (431. Figure 4.2 shows the trajectory position, velocity, and

acceleration profiles. Payloads range from zero to three kilograms in increments of

one kilogram. To generate a representative set of training data, the manipulator

is run through the trajectory ten times for each payload condition indicated in

Table 4.2. Each payload is a 15 centimeter brass disk attached to the sixth link

mounting flange (shown in Figure 4.3) with the difference in mass being a function

of disk thickness.

Figure 4.1 contains plots showing the position error scattering of the tracking

error data for eight sample periods of the trajectory. In each plot there are ten error

terms for each payload mass increment from zero to three. For example, in each

plot a srn,:11 ;rle represents the occurrence of an error value during a manipulator

run when the difference between the actual payload and what the controller is

informed to be the payload is one kilogram. Each occurrence of an individual

error term is counted 'up' the vertical scale in each plot such that a small circle

on the vertical axis 2 indicates the second time that error value occurred. Plots

B through E show that the payload class/tracking error data is separated in the

feature space. Overlapping of the error data for the payload classes is seen at the

very beginning (plot A) and towards the end of the trajectory (plots F through H).

The dispersion patterns within the feature space indicate that the data is suitable

4-3

to use with neural networks. Error data dispersion and overlapping are reflected

in subsequent neural network training and operation accuracy and error results.

Payload Initial Controller Payload (in Kg)
(in Kg) 0 1 2 3 4 5

0 * *s * * ..

1 * * * *

3 * * * * --

* indicates variations tested.

Table 4.2. Payload Conditions.

Trajectory Initial Position Distance Moved Time Taken
A(link three) (in degrees) (in seconds)

1 ___A 210.0 deg. -105.0 1.5
B 180.0 deg. - 105.0 1.5
C 1 135.0 deg. - 105.0 1.5
D 90.0 deg. - 105.0 1.5

2 A -D - 105.0 1.7
3 A -D - -105.0 1.9
4 - 0.0 deg. + 105.0 1.5
5 A-D -- 52.5 1.5
Links 1 and 2 are at -50.0 and -90.0 degrees, respectively.

Table 4.3. Trajectories used for Testing

4-4

.. n ,.. nnnnmu nm m ulmlnl li lni n mu u0

4+)4- 4 0 0 I

-.006 -004 -002 0 002 -.04 -02 0
(A) POSITION ERROR (RAD) (B) POSITION ERROR (RAD)

44

4 .-- -0
. IC

-.06 -.04 -.02 0 .02 -.09 -.06 -.03 0 .03

(C) POSITION ERROR (RAD) (D) POSITION ERROR (RAO)

4 ., 4

0O "0

-15 - -.05 0 .05 -.04 -.02 0 .02

(E) POSITION ERROR (RAD) (F) POSITION ERROR (RAD)

ox
-

-. 01 0 .01 .02 .03 -.03 -.02 -.01 0 .01

(r% ,Dn-M VRROR (RAO) (H) POSITION ERROR (RAD)

Figure 4.1. Payload Class Trajectory Data Dispersion

Trajectory Sample Period 10 50 100 150 200 250 300 330
Position Error Plot A BIC D E F G H

x I Payload class zero errors o f Payload class one errors
* Payload class two errors + Payload class three errors

4-5

6

4 - --

2I

. .. Velo ity.... . rad s

-4-

.. Velocit '(.....
-\A ceeato (rd/e 2)-... . " --

- \\ 1 "4-6

Figzure 4.3. PUMA 6I0 h vvith Pay load Attached

4-7

Payload classes, representing zero to three kilograms in one kilogram incre-

ments, are indicated during training by a value of 0.9 for the actual class with all

other classes set to 0.1. At specified training intervals (usually every 1000 training

iterations) the nets are tested on their ability to detect the correct class from all

training set vectors. Accuracy and error outputs are calculated using

Accuracy - n e (4.2)
n

' - n 7M)
E r o 1 -1 d., =~ ij --d '

Error - (4.3)2 n

where

* n is the number of training vectors,

* e is the number of incorrect net class outputs,

* m is the number of net output nodes,

* a is the actual output node output, and

* d is the desired output node output.

The neural networks consist of (2) input nodes, (X) nodes per each of two

hidden layers, and (4) output nodes where X denotes a number of nodes yet to

be determined. The structures are noted as (2,X,X,4) for two hidden layer neural

nets. The initial training sets consist of nine examplars from each payload class,

or 36 examplars from a trajectory sample time. Based on an assumption that if

the nets train with data representative of a worst case, they will train for all the

other cases or sample times, 36 examplars from sample time 10 form the initial

training set. A single hidden layer structure with 4 to 20 nodes in increments of

2 nodes is tried first. None of the single hidden layer structures began to train in

20000 training cycles. However, the first two hidden layer multilayer perceptron

(MLP) neural network tried, starts to train in the first 3000 training iterations.

Therefore, all remaining experiments focus on two hidden layer structures.

4-8

Searching for the acceptable number of hidden layer nodes to use entails

testing nets of varying sizes for training rates, maximum accuracy, and minimum

error. Neural nets with between 8 to 20 nodes per hidden layer are examined

using training sets from time periods 10, 20, 30, 50. 100, and 150 of the trajectory.

Figure 4.4 portrays the training time needed for the different net sizes to 'lock in'

to the final trained state for a set of trajectory time periods. Figures 4.5 and 4.6

show the final accuracy and error achieved by the nets at sample periods 10, 20,

30, 50, 100, and 150. Testing results indicate that 12 and 16 node hidden layer

nets work best with link three position information. Due to better perf(.. nance

from either 12 or 16 node nets in differing sample periods, one compromise in this

development is to use MLP neural networks with a (2,14,14,4) structure.

The next set of tests used multiples of the standard deviation (a) to deter-

mine the best value to use during normalization of the desired qd and actual q

trajectory data. Table 4.4 shows results from trajectory sample periods 10 and

50, and standard deviation multiples from 1/4 to 3. Using fractional values of

the standard deviation yielded faster training and the same or poorer performance

than using one sigma (lo). In addition, larger sigma multiples gave very poor

training performance. Therefore, one standard deviation is used for trajectory

data normalization.

Training Accuracy (in percent)

Sigma Multiple a/4 o,/2 01 2o, 3a
Sample Period 10 79.55 81.82 83.33 75.00 63.85

50 100.00 100.00 100.00 61.00 -_

Table 4.4. Standard Deviation Testing Results

In order to have nets trained on all available information before using them

within the control system, a set of neural nets with one net per every ten sample

periods is trained using 109 examplar vectors. However, in the trajectory error

4-9

SAMPLE PERIODS 10 20 30 50 100 150

Figure 4.4. Training Time 'Lock In' Testing Results

x-x 8 node hidden layer nets
0- -o 12 node hidden layer nets
- - 16 node hidden layer nets

- -+ 20 node hidden layer nets

data set there were more zero and one kilogram payload differenc,. examplars than

two or three kilogram variation examplars. To make up the 109 examplar vector

data set, some add~tional examplars representing two and three kilogram payload

variations are randomly added to the final training data set. One hundred and nine

is the number of examplars in the set when I stopped adding examplars. Training

nets with 109 examplar vectors takes an average of 400000 training iterations or

16 hours per net on a MicroVAX III.

In an effort to shorten the amount of training time a set of nets is trained

using 44 examplar vector training sets. Figure 4.7 compares training of (2,14,14,4)

nets with 44 versus 109 examplar vector training sets. Training time using the 44

4-10

102
99• . . .

96 . .. / . . .

/93 .. . /

90 - /

87-
8'. = - - -. . .

8 1 -...

7 8

75
SAMPLE PERIODS 10 20 30 50 100 150

Figure 4.5. 'Lock In' Testing Training Accuracy

x-x 8 node hidden layer nets
o- -o 12 node hidden layer nets
•*- -* 16 node hidden layer nets

±---+- 20 node hidden layer nets

examplar vectors requires an average of 2 hours and 200000 training iterations per

neural net. However, as shown in Figure 4.7, the final training accuracy is less and

error is higher than training the nets with 109 training vectors. ' herefore, nets

trained for every ten sample periods using 109 examplar vectors are employed.

Neural networks trained with 109 examplars are tested in feedforward opera-

tion using 109 vectors of position information not previously seen by the networks.

Accuracy and error are calculated the same as during training tests to allow for

direct results comparison. Figure 4.8 shows the results from final training tests

and feedforwvard operation tests. These test res'dts indicate that neural networks

4-11

14

1 2

10PEPEID 0 -03 0 0 5

0

0C 6 -_ -

- - 1-----------

SAMPLE PERIODS 10 20 30 50 100 150

Figure 4.6. 'Lock In' Testing Training Error

X-X 8 node hidden layer netsB
0' o0 12 node hidden layer nets

- 16 node hidden layer nets
.... ,__ 20 node hidden layer nets

can determine the payload mass parameter from trajectory error data.

4-1.

120

100 .-- --.-.--.-. ,- - -

80'

6- 80 - - _.
40

4O

C= 20
60 --------- _ _ - - _ _ _ _ _ _

-20
0 5 10 15 20 25 30 35

SAMPLE PERIOD

Figure 4.7. Training Results using 44 versus 109 Vector Training Sets

o ... 44 Vector Training Accuracy

x---x 44 Vector Training Error
- - 109 Vector Training Accuracy

- -+ 109 Vector Training Error

4-13

120

100 __

400

- 20 -- _

0 5 10 15 20 25 30 35
SAMPLE PERIOD

Figure 4.8. Final Training and Operation Testing Results

-* Training Test Accuracy
* + Training Test Error

0 ... 0 Operation Test Accuracy
x---x Operation Test Error

4-14

4.4 Control System Implementation

Once adequately trained nets are available, the next task is to set up the

necessary tools to use them within the adaptive model-based control structure.

First, the framework for loading the nets is established and tested to make sure

the proper values are correctly placed in the proper neural network array. Next,

the unnormalized position data, provided by the joint encoders, is used to verify

the feedforward operation in simulated realtime operation of the neural net arrays.

Finally, the recomputation of the dynamic feedforward compensation based upon

the mass estimate is verified.

Once both the loading and feedforward operation mechanisms are working

correctly, they are put together and tested in simulated realtime operation using

a set of test examplars. Next, they are integrated into an existing robot control

simulation package to find and correct any undiscovered problems. Ultimately,

the routines are integrated into the operational structure (AMBNNC) outlined in

Chapter 3 for on-line experimentation.

4.5 Experimental Performance Evaluation

The following experimental results are chosen to demonstrate the perfor-

mance potential of the AMBNNC as a direct adaptive control technique. A com-

pilation of results that add substance to the following discussion are located in an

internal report along with the listings of software tools developed as part of the

project (see Technical Report ARSL-89-12). In addition, results using the compro-

mise for updating the system dynamics mentioned in Chapter 3 are noted with an

asterisk (*) in the plot legend. This is due to the compromise being investigated

and developed late in the testing regimen. Most results ur, dynamic updates only

when a change other than zero or the current payload mass value occurs. The case

where the compromise improves performance is when there is no payload; other-

wise, performance deviations are not apparent. All trajectories used during the

4-15

experiments are described in Table 4.3. Figure 4.9 illustrates trajectory initial po-

sitions A - D and the paths followed by trajectories one, two, and three. Also, each

trajectory, initial position, and payload variation found in Tables 4.2 and 4.3 are

performed ten times to check performance repeatability. The presentation begins

by looking at the AMBNNC trajectory tracking performance using the trajectory

for which the neural nets are trained.

Trajectory 1A Trajectory 1B

Trajectory IC Trajectory iD

Figure 4.9. Trajectory Profiles

4-16

4.5.1 Original Trajectory Performance Trajectory 1A is the trajectory iised

to train the neural networks. Figures 4.10 - 4.13 show the trajectory tracking

performance of the AMBNNC versus SMBC with payloads of zero, one, two, and

three kilograms for trajectory 1A. The no payload case is considered difficult to

handle [44], yet the AMBNNC performance closely follows the SMBC performance

and is better in some portions of the trajectory. In each of the error plots for the

one, two and, three kilogram payload situations the controller is initially informed

there is zero kilograms or no payload. The plots reveal that AMBNNC performance

is superior to the SMBC, by at least two times for a three kilogram payload and

six times for a one kilogram payload, when both are without a priori payload

information. Also, the AMBNNC without payload knowledge achieves similar or

better trajectory tracking than the SMBC with the correct payload information.

In all of these tests the neural nets correctly identified the payload within

three neural network sample periods. Remember that the first neural net sample is

taken at 45 milliseconds into the 1.5 second trajectory. Full AMBNNC adaptation

to the correct payload is made at the next servo sample period with trajectory

correction occurring by the next net sample period. Examples showing NNPE es-

timates and how quickly the AMBNNC affects trajectory tracking are shown and

described in later sections. These results verify the ability of the neural networks

to provide accurate payload estimates during high speed manipulator motion. In

addition to providing payload estimates, the results indicate an aptitude for com-

pensating for unmodeled dynamics.

4-17

.002

0 I'
-. 0

' ,U', . ,

.004 - -- *

I-,

-.006 - l,

-.008
0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.10. Tracking Accuracy using NNPE on Trajectory 1A with 0.0 Kilogram

Payload

-• - SMBC w/0.0 Kg Load information
-. AMBNNC w/0.O Kg Load information.

4-18

005

0-

01_ _

-02

-. 025____ _______ _

0 .2 .4 .6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure 4.11. Tracking Accuracy using NNPE on Trajectory 1A with 1.0 Kilogram
Payload

S MBC w/0.0 Kg Load information
-)SMBC w/1.0 Kg Load information
--- AMBNNC w/0.0 Kg Load information

4-19

-.01

.03

- .04_____ __ __

-.06- _ _ _ _ _ _

0 .2 .4 .6 .8 I 1.2 1.4 1.6
TIME (SEC)

Figure 4.12. Tracking Accuracy using NNPE on Trajectory 1A with 2.0 Kilogram
Payload

- SBC w/0.0 Kg Load information
-.- SMBC w/2.0 Kg Load information
--- AMBNNC w/0.O Kg Load information

4-20

.04

02 -

L : ,, /

0

-.06-. 08 - ,; " "I , ,

0 2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.13. Tracking Accuracy using NNPE on Trajectory 1A with 3.0 Kilogram
Payload

-- SMBC w/0.0 Kg Load information
- •- SMBC w/3.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information

4-21

4.5.2 Performance on Alternatite Trajectories To further test limitations

of the AMBNNC, experiments are performed using trajectories for which the neural

nets are not trained. These tests include trajectories using the same motion and

speed as the original trajectory; however, they use different initial positions. The

tests are thereby able to test the neural network's abifity to generalize the payload

from trajectory errors occurring during manipulator exposure to degrees of gravity

and inertia not experienced in the original trajectory.

Figures 4.14 and 4.15 are chosen to represent the tracking performance of

the AMBNNC versus the SMBC on trajectory 1B with one and two kilogram pay-

loads. For both payloads the AMBNNC out performs the SMBC. The next two

figures focus on the AMBNNC execution of trajectories 1 C and ID. AMBNNC per-

formance in Figure 4.16 closely parallels the SMBC performance when the SMBC

is given the correct payload information. However, when both the AMBNNC and

SMBC are initially told the payload is zero kilograms, the AMBNNC performance

is far superior to the SMBC performance. Figure 4.17 illuminates the problem in

payload detection when the manipulator is essentially falling into the gravity field

throughout the entire trajectory. Due to the small amount of initial excitation, tra-

jectory 1D is the hardest trajectory for any payload estimator to detect payload

differences. As is shown during neural network 'firing' evaluations, the nets do not

identify the payload until near the end of the arm motion. Probable solutions are

to train the nets to detect negative payload variations or give the nets additional

training on paths similar to trajectory ID.

4-22

.01

-,015

-. 02 -

-.025
0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.14. Tracking Accuracy using NNPE on Trajectory 1B with 1.0 Kilogram
Payload

S MBC w/0.0 Kg Load information
-.- SMBC w/1.0 Kg Load information
--- AMBNNC w10.0 Kg Load information.

4-23

.04

02

0

-04 -_, I

-. 06

0 .2 .4 .6 .8 1 1.2 1.4 t.6

TIME (SEC)

Figure 4.15. Tracking Accuracy using NNPE on Trajectory 1B with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
- •- SMBC w/2.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information

4-24

.02

.015

.01

005 ,' - -.....

\U", I N.
0 .

L.-005

-.01 -"

-.015 !_

.02I

0 .2 .4 .6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure 4.16. Tracking Accuracy using NNPE on Trajectory IC with 1.0 Kilogram
Payload

-- SMBC w/0.0 Kg Load information

- •- SMBC w/1.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information

4-25

.04

00

L~~.02

-r_ .01

0 .2 A4 .6 .8 1 1.2 1.4 1.6
TIME (SEC,)

Figure 4.17. Tracking Accuracy using NNPE on Trajectory 1D with 2.0 Kilogram
Payload

- MBC w/0.0 Kg Load information

I--SMBC w/2.0 Kg Load information
--- AMBNNC w/0.O Kg Load information

4-26

4.5.3 Performance on Variable Length Trajectories As another indication

of the potential versatility of the AMBNNC, Figure 4.18 shows the tracking of

the AMBNNC versus the SMBC on trajectory 5A. Trajectory 5A moves half the

distan, in the same time as trajectory one. With a one kilogram payload the

trackng accuracy is better than the SMBC with the same initial payload infor-

mation. Nonetheless, over most of the trajectory the SMBC performs better than

the AMBNNC when the SMBC is given correct payload information. Figures 4.19

and 4.20 show AMBNNC tracking versus SMBC tracking on trajectories 2A and

• A, respectiv-ly. Overall performance of the AMBNNC with incorrect payload

information is superior to the SMBC performance irregardless of the payload in-

formation given to the SMBC. Similar tests on other trajectories and payload

conditions show similar performance characteristics. The neural net sample rate

is the primary factor that changes for these trajectories and is the subject of the

next discussion.

4.5.4 Neural Network Sample Rate Variation Tests Tests on trajectories

two through five indicatc a tracking accuracy dependence on how often the neural

networks are sampled during manipulator motion. To investigate the tracking ac-

curacy dependence on sample rate, a two kilogram payload is used on trajectory

IA. Figure 4.21 shows a set of single runs with sample rates of 4.5, 5.4, 6.3, and

7.2 milliseconds (ms) versus the SMBC using a 4.5 ms sample rate. These rates

represent neural network sample rates of 45, 54, 63, and 72 ms. AMBNNC perfor-

nance with larger sample periods is better than the SMBC with the same payload

information. Note that the servo sample rates are changed during these tests which

cause some manipulator performance degradatiun to be included in the tracking

error. With two kilograms payload and a neural network sample rate of 63 is,

Figure 4.22 shows that AMBNNC perfoirnance for the 63 ms sample rate is con-

sistent for various initial mass information conditions. Performance consistency,

even during poor performance, is one trait of the AMBNNC.

4-27

.02

01-_ _ _- -

0

-.03
0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIMIE (SEC)

Figure 4.18. Tracking Accuracy using NNPE on Trajectory 5A with 1.0 Kilogram
Payload

S SBC w/0.O Kg Load information
-- SMBC w/1.0 Kg Load information
-- AMBNNC w/0.0 Kg Load information_

4-28

.02--
015 _ ___

0

&.- 005

-015

0 .2 .4 .6 .8 1 1.2 1.4 1,6 18
TIME (SEC)

Figure 4.19. Tracking Accuracy using NNPE on Trajectory 2A with 1.0 Kilogram
Payload

- SBC w/0.0 Kg Load information
-- SMBC w/1.0 Kg Load information
--- AMBNNC w/0.0 Kg Lo' *nformation

4-29

.02k

.015

.005 ,"_ _

-.015

-.015

-.02
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

TIME (SEC)

Figure 4.20. Tracking Accuracy using NNPE on Trajectory 3A with 1.0 Kilogram
Payload

- SBC w/0.0 Kg Load information
-- SMBC w/1.0 Kg Load information
-- AMBNNC w/0.0 Kg Load informatio

4-30

C= .02
>C C=__-~

/L. 03N

.04- ~ ,~- _~_

I, '\I'

-. 06

0 2.4 6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure 4.21. Tracking Accuracy using NNPE on Trajectory 1A with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
--- AMBNNC w/O .0 Kg Load information and 45 ms neural net sample rate

-AMBNNC w/O.O Kg Load information and 54 Ins neural net sample rate j
--- AMBNNC w/0.O Kg Load information and 63 ms neural net sample rate
-- AMBNNC w/0.0 Kg Load information and 72 ms neural net sample rate

4-31

.02

-.02 ... _

-. 03
0 .2 4 .6 .8 1 1.2 1.4 16

TIME (SEC)

Figure 4.22. Tracking Accuracy using NNPE on Trajectory 1A with 2.0 Kilogram
Payload

- AMBNNC w/0.O Kg Load information
- - - AMBNNC w/1.O Kg Load information
- •- AMBNNC w/2.0 Kg Load information

4-32

11.5.5 Performance Repeatability Tests Figures 4.23- 4.26 exhibit the mean

and -4-/- one sigma for ten ruuns of trajectories 1A - ID. The payload is one kilogram

and the AMBNNC is initially informed that the payload is zero kilograms. Five

runs are made with a calibration prior to execution. Using the last calibration of

the previous five runs, fivc additional runs are made with a return to the initial

position between the runs. For comparison the plots include the SMBC tracking

accuracy for the same conditions given the AMBNNC and also when the SMBC is

told the correct payload. AMBNNC adaptation is easily seen in the convergence

of the standard deviation in each plot.

.01

~ .015 .4~

.05 -,-~I

-. 05.

C h
• N i

0 .2 .4 .6 .8 1.2 1.4 1.6

TIME (SEC)

Figure 4.23. Ten Run Mean Tracking Accuracy using NNPE on Trajectory 1A with
1.0 Kilogram Payload

- -7 SMBC w/0.0 Kg Load information
-SMBC w/1.0 Kg Load information

\AMBNNC wO.O Kg Load information

- - one standard deviation

4-33

.02

- .01 "' ~ ~ -__________

-. 0

-.03
0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (qEC)

Figure 4.24. Ten Run Mean Tracking Accuracy using NNPE on Trajectory 1B with
1.0 Kilogram Payload

-- SMBC w/0.0 Kg Load information
.. SMBC w/1.0 Kg Load information
- AMBNNC w/0.O Kg Load information

- -- one standard deviation

4-34

.03

.02., ,

0 .2-,- 4 6 . 8.. 1 1.27" 1-- .4. 6

.1.0Klga ala

, ,-.. -.....

--. MCw/.0gLodifrmto1

-.02onestandad deviatio

-.03 .0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.25. Ten Run Mean Tracking Accuracy using NNPE on Trajectory IC withI

1.0 Kilogram Payload

- - SMBC w/0.0 Kg Load information
• .. SMBC w/1.0 Kg Load information

-- AMBNNC w/O.O Kg Load information
- - +/-one standard deviation

4-35

.03

.05 _ _

o , .2 .4 . ' 6 2 1. .

viue.6 Ten Run Mean Trackin Acuay',. N o retr I D wi /

4-36

-. 03, ' '

-.04 >. -

-.05
0 .2 .4 .6 .8 1.2 1,4 1.6

TIME (SEC)

Figure 4.26. Ten Run Mean Tracking Accuracy using NNPE on Trajectory 1D with
1.0 Kilogram Payload

-- SMBC w/0.0 Kg Load information
.... SMBC w/1.0 Kg Load information

S- AMBNNC w/O.0 Kg Load information

+/- - one standard deviation4

4-36

4.5.6 Payload Range Performance Tests As another probe into the AMBNNC

performance envelope, sets of individual runs are performed using a range of pay-

load values outside the scope of payload mass variations with which the neural

networks are trained. Figures 4.27 and 4.28 display AMBNNC execution for ini-

tial)ayload information from zero through five kilograms with an actual payload

of two kilograms on trajectories IA and 1C. These tests introduce negative mass

variations and the neural nets used in these experiments are only trained to detect

positive mass changes. In spite of the lack of proper training, the AMBNNC is

able to force trajectory tracking convergence before the end of the trajectory. An

example of the neural net 'firing' patterns which bring about the convergence is

found in the next segiuent.

4-37

.04

.0 4 - "_- -_ _"

.0 --.--06'-- - - -'.

-0 _I _ _ ___ _ ! . ..

o .2 .4 ,6 .8 1 1.2 1.4 1.6

TIME(SC)

Figure 4.27. Tracking Accuracy using NNPE on Trajectory 1A with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
--- AMBNNC w/0.0 Kg Load information

AMBNNC w/1.0 Kg Load information
AMBNNC w/2.0 Kg Load information

--- AMBNNC w/3.0 Kg Load information-4AMBNNC w/4.0 Kg Load information

AMBNNC w/5.0 Kg Load information

4-38

0 .I 1.I41

04

.02 --

- o_ - -

-. -

-.03 , - - •

-.04
024 .6 8.3 1.2 1.4 1.6

WI E (SEC)

Figure 4.28. Tracking Accuracy using NNPE on Trajectory 1C with 2.0 Kilogram
Payload

SMBC w/0.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information
- •- AMBNNC w/1.0 Kg Load information
- - - AMBNNC w/2.0 Kg Load information

AMBNNC w/3.0 Kg Load information
- - - AMBNNC w/4.0 Kg Load in"rmation

- - AMBNNC w/5.0 Kg Load information

4-39

4.5.7 Neural Network 'Firing' during Teqt Execution The ability of the

AMBNNC to improve the trajectory tracking performance is directiy a result of

the neural networks being able to quickly and accurately determine the payload

mass parameter. The following presentation clearly demonstrates that the neural

networks are able to provide fast and accurate payload mass estimates during high

speed manipulator motion. Two noted exceptions are when trajectory ID is being

traversed and when the AMBNNC is originally told that the mass is greater than

is actually attached. Keep in mind that unless an asterisk is in the plot legend, the

payload mass parameter is changed only when a new value other than zero or the

previous estimate is given by the neural nets. For those plots with an asterisk, the

system dynamics are updated with each payload estimate through the first 450 nis

of a 1.5 second trajectory.

4.5.7.1 Original Trajectory The first four plots (Figures 4.29 - 4.32)

illustrate the neural net payload estimates for zero, one, two, and three kilogram

payloads on trajectory 1A. Figure 4.29 portrays the zero kilogram payload case

using the compromise for system dynamics updating. Remember that the compro-

mise method updates the system dynamics with every payload estimate through

sample time 100 (450 ms). Beginning at sample time 110 (495 ms) and continuing

for the duration of the trajectory, the payload is updated only when a variation in

the payload is detected. Using the compromise approach, the first estimate other

than zero comes at 630 ms into the trajectory and changes the payload mass pa-

rameter to one kilogram. The mass parameter remains at one kilogram until 1.12

seconds when it is changed to three kilograms. At about 1.35 seconds it is changed

to two kilograms and finally to one kilogram at about 1.44 seconds. The behavior

of the neural networks for the case just described is typical for every trajectory

execution.

Figure 4.30 shows the payload estimates for trajectory 1A with a one kilogram

payload. Not using the compromise for system updates, the correct payload value of

4-AO

.005

0 -

ck -005
u J

.01
0 2 4 6 8 1 12 14 16

TIME (SEC)

0

0 .2 .4 .6 8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.29. Firing of Neural Networks during Trajectory 1A with 0.0 Kilogram
Payload

-- SMBC w/0.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information

A Neural net outputs (*)

one kilogram is achieved on the third neural net trajectory tracking error sampling.

The payload mass parameter remains unchanged throughout the trajectory except

for a change to two kilograms at 1.44 seconds. Similarly the two kilogram payload

is identified by the third ANN trajectory error sampling as exhibited in Figure 4.31.

The payload mass parameter is again changed to various values towards the end

of the trajectory. The compromise update technique is used for the last time in

the three kilogram payload run shown in Figure 4.32. The payload is immediately

detected by the neural nets, and the 'firings' of the nets indicate how closely the

desired trajectory is being followed.

4-41

SE -02

0 2 46 12 14 6

TIME (SEC)

0 11±1k I [Ill1 t fTluWIILHLLLLI
I I

0 2 4 6 8 1 12 1 4 16
TIME (SEC)

Figure 4.30. Firing of Neural Networks during Trajectory 1A with 1.0 Kilogram
Payload

_- SMBC w/0.0 Kg Load information

SMBC w/1.0 Kg Load information

- - - AMBNNC w/0.0 Kg Load information
A Neural net outputs

Several explanations for the neural network behavior are possible. One ex-

planation is that the nets are giving incorrect values in an attempt to drive the

trajectory tracking error to zero. Another possibility is overlapping of decision

regions in the mass parameter decision space causes the nets to give incorrect

estimates. An additional possibility is that the nets require more training.

Due to the exhaustive training given the nets, more training should not be

required. Since incorrect values are seen to occur during sample time periods where

there is littie or no overlap in the position trajectory error/payload decision space,

4-42

03

-03 "

-06 "'
0 2 4 6 8 I 12 14

TIME (SEC)

0 2 .4 6 8 1 1.2 14 1 6
TIME (SEC)

Figure 4.31. Firing of Neural Networks during Trajectory 1A with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
SMBC w/2.0 Kg Load information

--- AMBNNC w/0.0 Kg Load information
A Neural net outputs

overlapping in the de a space cannot be the cause. Therefore, the nets must

be yielding incorrect values in an attempt to drive the tracking error to zero. The

endeavor of the neural nets to drive the tracking error to zero is evident in the

effects of incorrect payload values on the trajectory tracking.

4-43

or

05

-1 0 2 46 8 1 12 1 4 1.6
TIME(S)

0 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.32. Firing of Neural Networks during Trajectory 1A with 3.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
-- SMBC w/3.0 Kg Load information

- AMBNNC w/0.0 Kg Load information
A Neural net outputs (,)

4-44

4.5.7.2 3i3ctllaneous Trd, cctory Tests All of the following tests are

performesd on trajectories in which the neural networks are not trained. AMBNNC

performai.ce when correctly informed of a one kilogram payload on trajectory IB is

shown i_ Figure 4.33. Throughout the entire trajectory the payload mass paramie-

ter value is changed only at 1.44 seconds of the 1.5 second trajectory. Figure 4.34

is the same trajectory with a payload of two kilograms. The AMBNNC is initially

informed the payload is zero kilograms; however, the AMBNNC correctly identifies

the payload by tbe second tracking error sampling. For trajectory IC with a one

kilogram payload, Figure 4.35 shows the AMBNNC determining the correct ,,-tv-

load by the second tracking error sampling. Also, note the mass parameter value

one kilogram is maintained throughout the trajectory resulting in the close fol-

lowing of the desired trajectory. Figure 4.36 illustrates the problem trajectory ID

poses. Since the vertically articulated arm is essentially falling into the gravity

field during this trajectory, the neural nets are not able iu, discern the payload

until towards the end of the manipulator motioa. Training the nets to indicate

negative mass variations may solve the problem posed by trajectories similar to

trajectory 1D.

4-45

S-,02

0 2 .4 .6 .8 I121.4 1.6
TIME (SEC)

2

-1 .,, , ,., i

0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure 4.33. Firing of Neural Networks during Trajectory 1B with 1.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
SMBC w/1.0 Kg Load information

- - - AMBNNC w/1.0 Kg Load information
A Neural net outputs

4-46

03

~ ~-- - ---- --- -- - ---

cr -. 03j- - /

06 2 4 6 81 2 1 4 1.6

TIME (SEC)

0 .2 .4 .6 8 1 12 1.4 1.6
TIME (SEC)

Figure 4.34. Firing of Neural Networks during Trajectory 1B with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information
SMBC w/2.0 Kg Load information

- -- AMBNNC w/0.0 Kg Load information
A Neural net outputs

4-47

.02

0 2 4 6 .8 112 1 4 16

TIME (SEC)

0 .2 .4 .6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure 4.35. Firing of Neural Networks during Trajectory IC with 1.0 Kilogram
Payload

-SMBC w/'C.O K; T~o;-d informption
SMBC w/1.0 Kg Load information

-- AMBNNC w/0.0 Kg Load information
A Neural net outputs

A-48

C 0 3 - ---

-03
02463I 12 14 16

TiME (SE)

0 .2 4 6 8 12 14 1,6

TIME (SEC)

Figure 4.36. Firing of Neural Networks during Trajectory ID with 2.0 Kilogram
Payload

- SMBC w/0.0 Kg Load information

SMBC w/2.0 Kg Load informatin
AMBNNC w/O.O Kg Load information
Neural net outp,,ts

4-49

j7.3 Nega (ice Payload Variation Tests To further (lemonst rate t le

1)robl. at of not training the neural nets to detect negative payload variations. the

tollowing two plots dlepict, situations in which the payload is init iallv mi srepre-

sentedl t) the ANIBNNC. For both Figure -4.37 and 4.38 there is no paladv

Figure 4.37 the trajectory is 1A and the A%1BN.NC is initially informed the paylo)ad

is twi kilograms. Figure 4.38 shows execut ion of t raject ory I (' wit h thle A M I3BN"N('

troiially told the payload is three kilograms. Both figures indicate that the neurm,

nets cannot give a value other than zero until a positive delta payload is dletected.

.04 1
02 -. -. - . - - .

-02

0 2 4 6 8 1 12 1 4 1 6

TIME (SEC)

0 2 4 6 8 1 1.2 1.4 1.6
TIME (SEC)

Figure 4.37. Firing of Neural Networks during Trajectory 1A with 0.0 Kilogram
Payload

4-50

.05

0 -

-051
0 2 4 6 8 1 12 1 4 1 6

TIME (SEC)

S2-- __

0 2 .4 6 .8 11.2 1.4 1.6

TIME (SEC)

Figure 4.38. Firing of Neural Networks during Trajectory IC with 0.0 Kilogrami
Payload

- MBC w/0.0 Kg Load information
--- AMBNNC w/3.0 Kg Load informiation

A Neural net outputs

4-51

4.L" Stummary

The ability of neural network to identify pa.load mass from trajectory posi-

tion error data is clearly indicated by the neural networks training with the position

error data. All of the following development and validation testing defied the fi-

nal form of the Neuial Network Paylo, Estimator. The final form of the NNPE

for a single PUMA joint consisted of a (2,14,14,4) structure. Final training and

testing accuracy and error results decisively demonstrate that neural ne'works can

deterinine the payload mass from trajectory error information.

The Adaptive Model-B tsed Neural Network Controller was developed to in-

corporate the NNPE as an adaptation mechanism. Experiments on the PUMA-560

robot authentcate the ability of the AMBNNC to identify and adapt to an un-

known payload within three neural net sample periods. The AMBNNC adaptation

ability is proven to extend to trajectories other than the trajectory for which the

neural networks are trained. In addition, the AMBNNC performs well over a large

range of payloads outside the established payload range with good convergence to

a small final position error in all cases. All of these experimental results substan-

tiate the abilty of an artificial neural network to provide accurate estimates of the

payload mass during high speed manipulator motion.

After the initial tests were completed, another approach to updating the pay-

load mass parameter of the system dynianics with the NNPE estimate was tested.

The new method updated the dynamics with every payload estimate. Results indi-

cated better performance with no payload attached to the manipulator mounting

flange. However, poorer performance resulted when a payload was attached. These

outcomes were the opposite of those from the tests al:eady accomphshed where the

dynamics were updated only when a change from a previous payload value was de-

tected. Two combinations of both methods were tried. Using updates with every

estimate up until 450 ns of a 1.5 second trajectory performed better than using

updates through 225 nms. Further investigation into combining the two approaches

4-52

may provide excellent performance over the entire spectrum of payload variations.

Other conclusions and recommendations are found in the next chapter.

4-53

V. Conclusions and Recommendations

5.1 Conclusions

A new concept for adaptive model-based control was proposed, developed,

and experimentally validated. In the course of the development, artificial neural

networks were trained to quickly and accurately estimate payload mass variations

over high speed robotic manipulator trajectories. Integrating the Neural Network

Payload Estimator (NNPE) into an adaptive model-based control structure pro-

vides an algorithm that produces excellent and consistent tracking performance

;n the presence of uncertain payloads. The tracking performance of the resulting

Adaptive Model-Based Neural Network Controller (AMBNNC) was shown to be

equal to or superior to a model-based controller with full prior payload information.

Investigations performed during the NNPE development indicate that 12 to

16 nodes per each of two hidden layers of a multilayer perceptron provide the best

training performance with similar durations of training time. In addition, training

time was found to be directly proportional to the number of training examplar

vectors used, the distribution and overlapping of the trajectory error data in the

mass parameter space, and the manner in which the data is normalized before

being input to the neural networks. Final training, testing accuracy, and error

results clearly show the NNPE capabilities to detect payload mass throughout the

training trajectory. NNPE payload mass identification in both the early and late

stages ,f the training trajectory tend to be degraded and is reflected in AMBNNC

performance testing, especially during the latter stages of the trajectory.

Experiments revealed that the AMBNNC is able to provide exceptional per-

formance over a wide range of trajectories and payload conditions. It is important

to remember that the NNPEs were trained to detect payload mass variations on a

single tizjectory. Additional AMBNNC trajectory tracking experiments show that

5-1

neural network sample rates directly affcct tracking efficiency with higher sample

rates yielding better performance. The better performance at the higher sample

rates is due to the nets being able to update the feedforward dynamics when a pay-

load variation occurred. Using neural network sample rates over 40 percent lower

than used during normal experimental runs, 7.2 ms versus the normal 4.5 ins,

the AMBNNC still out performs the single (non-adaptive) model-based controller

(SM BC).

Payload range tests revealed that for any external payload in the range tested,

the trajectory tracking performance was the same for positive initial payload vari-

ances. For situations where a negative payload variation was encountered the

performance was degraded over part of the trajectory, but in each case converged

to a small end position error. Additionally, when the AMBNNC is initially in-

formed of a payload within plus or minus one kilogram from the actual payload

value, the peak and final position errors were superior to the SMBC performance

under similar conditions. Throughout the testing regimen the trajectory execution

of the AMBNNC was consistent for any given trajectory or payload condition.

The objective underlying all of AFIT's research is to seek out a method or

group of methods that would enable a robotic manipulator to emulate human arm

performance for Robotic Telepresence applications. One fundamental capability

that must be emulated is the ability to adapt to payload variations during high

speed manipulator motion. The Adaptive Model-Based Neural Network Controller

has clearly demonstrated the potential to satisfy the varying payload adaptation

requirement, thus bringing the Robotic Telepresence concept a step closer to real-

ization.

5.2 Recommendations and Future Directions

Several areas of investigation could lead to an improvement in the perfor-

mance already achieved with the AMBNNC. Tests showed that neural net esti-

5-2

mate sample rates affected performance. Therefore, the first potential improve-

ment would be to use more neural nets during the trajectory execution. Only 33

nets were used to cover 334 servo sample periods in these tests. A question to

answer would be, "How many and how often are payload mass estimates required

for optimum performance?"

Looking for the best possible performance requires fixing several problems

that caused degraded trajectory execution. One apparent fix would be to train

the nets to detect negative payload mass variations to eliminate the degrad'ed

performance observed in the situations where negative variances occurred. Also,

initial training with a representative sample of examplars from other trajectories

could potentially lead to a version of the AMBNNC that would be payload and

trajectory independent. In addition, the scheme to update the system dynamics

needs to be studied.

Another area requiring examination is the discretization of the mass param-

eter space. One issue to keep in mind is that each division of the mass parameter

space increases the size of the nets, the computational loading, the training time,

and the amount of training data needed. Also, the mass parameter was considered

to be a point mass in these tests. To obtain true versatility requires the capabil-

ity of the AMBNNC to perform with masses where the point mass assumption is

invalid. The above issues can be studied with one link motion; however, to fully

explore the AMBNNC potential the investigation needs to be expanded to include

other manipulator links.

During single link motion, one degree of freedom (DOF), gravity and inertia

dominate the dynamic effects encountered. To excite other dynamic effects such as

coriolis and centrifugal, requires investigation of more DOF. In addition, examining

AMBNNC performance up through 3 DOF is required for comparison with existing

experimental results using other on-line estimation methods (see [76]). Comparison

with other methods of proven on-line payload estimation adaptation mechanisms is

5-3

important for deciding which method might perform better in a given application.

The multilayer perceptron structure was used primarily due to the local avail-

ability and knowledge that existed for the structure. Other neural networks ex-

ist which implement other models of neurobiological behavior. Examples are the

Hopefield, Brain State In A Box, Dipole, Temporal Order Model, and Boltzmann

Machine [24,63,3]. Perhaps one of these or another neural net model will give simi-

lar or better performance with increased efficiency. Perhaps a temporal multilayer

perceptron model such as outlined in Appendix B might serve as a basis for further

research. When talking about other types of neural networks, the issue of training

becomes important. A simple gradient search was used for training the NNPEs.

More efficient training methods, such as a quadratic method as suggested and used

by Stright [73], exist and would decrease training time.

While several topics relevant to the AMBNNC performance potential remain

to be explored, there are other areas in which the research into using the NNPE

and AMBNNC techniques can be performed. Using these methods on other on-line

parameter estimation problems, and using other types of manipulators are just a

couple of other areas where these schemes can be tried. Sensitivity analysis of the

design parameters could determine which parameters require the most attention

during the design and implementation of the NNPE techniques into other control

systems and environments. The AMBNNC was tested against a control law with

known performance limitations to enable improvements caused by the AMBNNC

to be observable. Once the AMBNNC technology is matured it can be married

with more robust feedback compensation to provide operation in uncertain payload

environments.

5-4

Appendix A. Contemporary Neural Approaches to Robot Control

A.I Introduction

The employment of artificial neural networks (ANNs) to control robots is

beginning to gain momentum, perhaps due to the excellent test bed robots provide

for investigating the potential of artificial neural networks. Neural networks show

potential for speech, vision, motor and sensor-motor control, tactile control, and

other attributes required by robots to emulate humans [26]. To judge if neural

networks can be part of an engineering solution to the design of an adaptive robot

control system, three questions arise. First, what are neural networks and how do

they work? Second, why use neural networks: what are their advantages over other

techniques? Third, how are they being used: do previous applications relate to

the application under consideration? The balance of this review provides current

information for use in answering these questions.

Neural networks and how they work are covered in Chapter 2. Therefore,

this discussion begins with a brief section on why neural networks are attractive

for robot control. Then an extensive review of how neural networks are currently'

being applied in robot control research is given.

A.2 Why Neural Networks?

The application of existing neural network models to various computational

problems is an active area of research. The attractiveness of neural networks stems

from their many inherent characteristics, including fault tolerance, the ability to

process many hypotheses at the same time, and their ability to learn from and

adapt to changing situations [49, page 4]. One possible specific application is

parameter estimation.

1Originally written in May 1989, an effort has been made to note any recent experiniental work.

A-1

Many of the parameters required for compliant motion control and control in

uncertain environments can be determined from current sensor information using

pattern behavior recognition techniques. Neural networks have zeen successful

in pattern behavior rccognition applications such as speech and vision processing

'791. If other problems can be formulated i, to pattern recognition terms, the

use of neural networks may provide a viable solution. Additionally, all possible

approaches to solving engineering and scientific processes must be looked at to

determine which works best for given situations.

A.3 How are Neural Nets being used for Robot Control?

Current research into using neural networks in robotics falls into four general

categories. The four categories are:

* manipulator dynamics based trajectory control,

* sensor based robot control,

* task development and control, and

* training methods.

The first category, the discussion of which is located at the end of Chapter 2,

includes those studies on training neural networks the dynamic and or kinematic

relationships in order to control the trajectory of the manipulator. The second

category teaches the neural network to control the robot based only on sensor

inputs. Sensor based robot control includes visual, tactile, proximity, other sensors,

or combinations of sensor data (multiple sensor fusion). The third category focuses

on those efforts to use sensor data together with task priorities and constraints to

develop and control robot task strategies and performance. Task development and

control includes hand grasping strategies, autonomous exploratory mechanisms,

telepresence operations, etc. The fourth category is concerned with investigations

into which method(s) are best suited for training neural networks used in robot

control systems.

A-2

Experimental validation of developing techniques, such as training methods.

is rare in current literature. Most work deals with simulation of robots, sensors,

and environments. While the information garnered in this fashion is valuable for

indicating possibilities, simulation is not the 'real world.' This review will focus oil

developments based on experimental research, when possible. However, in some

areas only simulation studies are available. First, sensor based robot control is

ar':eyed. Next, research into using neural networks to develop task strategies and

control their performance is examined. Finally, a look is tak2n at the different

training methods currently being pursued.

A .4 Sensor Based Robot Control

Marrying vision systems to robot manipulators is the most active area of

neural network use in robot control. This is perhaps a direct result of neural

networks' proven abilities in vision and speech pattern recognition. One simple

yet representative problem many people have investigated is control of an inverted

pendulum [8,12,15,79]. As shown in Figure A.1, a pendulum or "broom stick" is

pinned on top of a cart. The cart travels freely along a track in the horizontal

plane.

CART POSITION
v CART VELOCITY
0 PENDULUM ANGLE

PENDULUM VELOCITY
F REACTION FORCE

F L.V

Figure A.1. The Inverted Pendulum [15]

System states are cart position and velocity, the pendulum angle with respect

A-3

to the vertical, and its angular velocity. The task is to balance the pendulum

and keep the cart from hitting either end of the track. One example by Tolat and

Widrow of using neural networks for this problem is in the DARPA Neural Network

Study of 1988 [151. Their control system using the states discussed above is shown

in Figure A.2. Tolat and Widrow use a computer simulation for the inverted

pendulum problem. One Adaptive Linear Neuron (ADALINE, see Figure A.3) is

used for the neural network. The inputs to the network are two 5-by-li quantized

visual images of the cart and pendulum. Each image represents a sequential instant

of time to allow the network to discern velocity information. The output of the

network is the force required to stabilize the system. The system is trained using

eit!her a least mean square or Widrow-Hloff algorithm. After training, the authors

state, "it was able to balance the inverted pendulum indefinitely, without crashing"

[15, page 406].

Figure A.2. An Inverted Pendulum Control System (15]

The ability of a net to learn to stabilize an unstable system shows the poten-

tial for using neural networks in similar control systems. B.W. Mel's 'MURPHY'

advances the use of vision and neural nets for robot control. The following brief

outline is taken from his thesis based on a "learning-by-doing" approach to robot

learning [541.

A-4

Figure A.3. An ADALINE [79]

MURPHY's basic components are four interconnected CMAC' type neural

networks, an autofocus camera, and a Rhino XR-3 manipulator [54, page 5]. MUR-

PHY starts with no a priori knowledge of the arm kinematics or the vision system

characteristics. Joints, manipulators, and obstacles are illuminated in white and

the vision system is thresholded to 'see' only white against a dark background (see

Figure A.4). MURPHY is trained, with no supervision, by showing it a represen-

tative sample of the possible arm configurations in the visual work space. After

initial training, the manipulator is instructed to move from one position to an-

other. There may be obstacles in the way and the network must decide how to

reach around them to its objective. The net determines the path and th. motions

used by the arm to perform its task. Figure A.5, taken from the thesis, shows

MURPHY negotiating obstacles to acquire a target. Experimental results show

the network converges to the optimum path after several iterations. Also, the

A-5

U

more problems it solves, the more adept it b1ecomes at determining the optimal

path.

Figure A.4. MURPHY's Physicai Workspace 1541

The method of approach to vision based robot control depicted with MUR-

PHY is similar to Michael Kuperstein's approach with INFANT. However, Kuper-

stein uses stereooptic vision to work in a three dimensional work space. INFANT,

shown in Figure A.6, stands for Interacting Networks Functioning on Adaptive

Neural Topologies. Kuperstein first introduced this new architecture at the 1988

American Contfol Conference as a neural network designed to achieve adaptive

visual-motor coordination of a multijoint robot [39]. It is designed to coordinate

any number of topographic sensor inputs with any number of joint/arm configu-

rations.

A-6

A-7

The neural controller is taught using an unsupervised teaching scheme called

"'circuiar reaction" 139, page 2282]. Circular reaction is an extension of Piaget's

sensoriniotor stage which occurs between birth and 2 years of age. In it the "in-

fant ... gradually becomes aware of the relationship between their own actions

and their effects ol the environment" '28, page 711. Figure A.7 gives a pictorial

representation of the circular reaction learning scheme.

In the scheme, sensoriniotor relations are first learned through correlations

between input and output signals. Then, the learned correlations are used to drive

the manipulator to either reach the correct point in space or to properly grasp

an object present in the visual field. Shown in Figure A.8, the system consists of

an image processor, two stereo cameras, and a simple manipulator, In the initial

experiments, the network learns to make the robot reach to certain points in a

given work space. Recently, with - more complex version of INFANT, the network

learns to "accurately grasp an elongated object .ithout any information about the

geometry of the physical sensori-motor system" 140, page 25 .

Another area of active robot/sensor research is tactile perception. Tactile

perception is pattern or object recognition via touch Jl, page 12371. In an article

by Y. C. Pati and others, tactile perception using multiple integrated sensors is

studied. A discussion taken from their article follows '591.

The authors start by listing attributes of tactile sensors. They are, as follows:

" compliant contact surfaces,

" high resolution surface stress transduction,

" local signal conditioning, and

" local computation to recover surface stress.

Figure A.9 shows a diagram of their contact surface model. The compliant

contact layer is modeled as, "a homogeneous isotropic, linear elastic half-space."

The strain sensors are placed below the surface a distance x.

A-8

e T D A

z[z

z s ctatr iga

X-2. S2

2 Z2

C

3 R W i w prcsoT is sarenst processor

D.. is set of actuator drivers
A is set of actuators

Ris set of random generators
3 x s transduced sensory input

s s processed sensory signal
tis local target signal

rM a is actuator driver signal
r is random generator signal
z is actuator signal

Figure A.6. A Diagram of INFANT Topography [39]

A-9

..... 3~ UI ,,,,.. visual signals

.11 ,,0 camera motor signals 11"'
(fixation)

(C ffeedback'

~ ~ TARGeT
APs] MAP motor b

a signals

ACTIVITY IGEN, E rATRI

Figure A.7. Sketch of Circular Reaction Anatomy [391

A convolution operator relates the surface stress and strains at the strain

sensor depth. The 'touch' is from a cylindrical indenter which imparts its force

perpendicular to the point of contact.

The neural network consists of a signal plane that determines a current

"guess" (L the surface stress, and a constraint plane to evaluate the guess to de-

termine if the signal plane needs adjusting. A convolution kernel is used as an

interconnection matrix between the signal and constraint planes. Exponential am-

plifiers are used in the signal plane. Other than these two changes, the network

is essentially a Tank-Hopfield neural network [59]. The authors state their tactile

system shows the ability to deconvolve applied stress profiles from strain measures

in about 1 millisecond, and is able to do it in presence of noise. They also mention

that their algorithm works in a breadboard version and is being made into a VLSI

chip at the Naval Research Laboratory in Washington D.C.

Proximity sensors are also being employed for robot control. The Fork Lift

Robot is one such use presented to the 1988 DARPA Neural Network Study ap-

A-10

Figure A.8. Experimental Setup of INFANT [391

plications panel. The work is done by Von Ayre Jennings [15, pages 445-450]. An

industrial robot (Merlin) is fitted with a fork lift end effector. Using infrared prox-

imity sensors, the network is taught how to acquire an offset pallet and properly

insert the fork. The sensor and required motion relationships are both "extremely

complicated and nonlinear" [15, page 447]. A CMAC neural network is used to

generate the proper drive torques based on sensor data inputs. The network is

trained in a supervised fashion by a human operator. The teacher uses a joystick

placed on the robot wrist to guide the robot through the correct pallet acquisition

and fork insertion maneuvers. The robot is provided with the same information

the human is given during the learning process. Figure A.10 shows the project

setup.

A-11

>*~~Cyindrical Indlentor

trai Senors lasic Halt Spare

Figure A.9. Sensor Field Cross-section (591

FORK-LIFT
END-EFFECTOR VIDEO INDUSTRIAL

FOR PROXIMITY

PROXMITYPROXMITYSENSORS

SENSORSSENSOR INPUTS

PLATFORM
COTIVATO

DRIVE SIGNALS
NEURAL NETWORK CONVENTIONAL LOW

HIGH LEVEL CONTROLLER LEVEL ROBOT CONTROLLER

Figure A.10. Forklift Test Setup (151

A-12

Stated experimental results indicate the neural network can perform a task

autonomously after only seven teaching iterations. Furthermore, with one more

training session the neural net determined the impossibility of acquiring one pal-

let and moved on to the next pallet. Jennings states this shows the ability of

the network to, "learn complex control functions and to generalize in unexpected

situations" [15, page 450].

A..5 Task Development and Control

This area brings together many of the attributes of the other four areas:

sensor (visual, tactile, proximity, etcetera) data control, trajectory control, and

learning. In the study of human prehension, Thea Iberall of the University of

Southern California is one of the leaders. In an article presented to the American

Control Conference in 1988, she discusses the use of neural networks to achieve two

objectives related to robot task planning and accomplishment. They are mapping

"object/task properties into prehensile posture" [31, page 22881 and determining

force vectors used within a task posture to accomplish the task.

These separate but interrelated mechanisms require simultaneous resolution.

One is determining the proper response posture to the task "opposition space."

The other is determining the "virtual finger mapping" forces to accomplish the

task. Each task mechanism uses a multilayered neural network. The inputs to each

network consist of object surface length (with respect to number of finger widths),

object width, amount of required force, and desired task precision. One network

is trained to chose between full palm opposition or pad opposition postures. The

other network is trained to determine a mapping for the individual fingers, depen-

dent on task requirements. Training uses supervised back-propagation and a delta

learning rule. The author states simulation results indicate the neural networks

learned to mirror known human prehensile traits, but did not do well on tasks

requiring precision. Iberall states this deficiency is probably due to insufficient

A-13

learning.

Recently; Huan Liu, Thea Iberall, and George Bekey; presented a robot hand

control system based on a neural network architecture [50]. The article formalizes

and further exploits the work previously done by Iberall, and represents a solid

and logical progression of development of this research area. The system is called

GeSAM, and consists of "a Task Analyzer and an Object Analyzer, that work

together to drive the robot hand" [50, page 38]. Its basic structure is the same as

discussed above but with more development into the type and size of neural network

used. However, the prehensile postures differ in that they are categorized into

several primitives and placed in lookup tables. Classifying the prehensile postures

is an attempt at increasing the mobility of the architecture, since a different table

is available depending on which of the currently developed hands it is being used

on, i.e Stanford/JPL,..., Utah/MIT.

In a proposal going beyond a basic robot control system, Susan Eberlein

of the Jet Propulsion Laboratory proposes the use of a hierarchical multilayered

neural network to control autonomous exploratory vehicles such as the Mars Rover

[173. The net would be used as an expert decision maker employed for navigation,

data transmission, and controlling scientific experiments. In this context, neural

networks would be used for autonomously planning and controlling mission task

accomplishment.

Along the same lines as determining the trajectory of a robot arm in the

presence of obstacles, autonomous robot navigation is receiving some attention.

The main thrust is to enable a robot to guide itself through terrain in new envi-

ronments using only sensor data. One example is MURPHY, previously discussed,

which develops a path "regardless of the presence or absence of obstacles" [54, page

46]. Another example is presented by Chuck Jorgenson in the 1988 DARPA Neural

Network Study. A Hopfield neural network builds a 'world (contour) map' based

on sonar data and plans a navigation path based on the map. In the map, obsta-

A-14

cles are seen as raised areas and valleys denote possible routes. The network uses

the mapping to determine the optimal path to the target for the robot. Jorgenson

states a demonstration unit is operational.

A.6 Training Methods

People differ on how to train neural nets. Bart Kosko defined learning as

either supervised or unsupervised in a tutorial on "Associative Memory" at the

1988 International Conference on Neural Networks [36]. Supervised learning is an

intelligent teacher feeding task data to a ANN until the ANN performs correctly.

One example is using a teaching pendant or controller to move a robot through

a given task until the robot can do it unassisted, such as with the forklift robot.

Unsupervised learning is feeding input patterns into an ANN and letting it learn

to detect structures within the data. Unsupervised learning is the basis of a neural

network structure known as Kohonen Self-Organizing Maps, named after Tuevo

Kohonen of Helsinki University [35].

Many people break the types of learning up one more step. They add a

method called reinforcement learning [19, page 1096]. The premise is that every

time you do something wrong you get punished, and when you do something cor-

rect you get rewarded. Sooner or later you produce correct responses for given

inputs. Neural networks perform reinforcement training by feeding error signals

back into the network. The error signals are the difference between the desired and

actual outputs. Error information is used as a performance metric in robot con-

trol; therefore, reinforcement learning is logically suited for training neural network

based robotic control systems.

Richard Elsley from the Rockwell International Science Center writes a su-

perb article on learning architectures for back-propagation neural networks using

reinforcement learning [181. Two control architectures are covered. One involves

training the ANN to be the entire system controller, which lie states would re-

A-15

quire a massive neural network. The other, which lie simulates, trains the ANN

the inverse kinematics. A vision system is used to provide position information

for comparison with the desired position inputs. Figure A.11 shows the architec-

ture presented for training neural networks as system controllers, and Figure A.12

shows the setup for teaching inverse kinematics.

Goa s Eror ;iii]Fi Commands fSystem Sno oi

(robotTr a...ng... Position en-cry
Trigureg

ye oPreviousTraining Errors Position~~~~Training Tain 1

Training CID~

Figure A.11. System Controller Training Setup [18]

Naoobikn Iro~m of System

Jiv Prebt) (iso))viu

Figure A.12. Inverse Kinematics Training Setup [18]

A-16

While not specifically addressing neural networks, Judy Franklin of GTE

Laboratories presents an excellent paper on reinforcement learning for robot con-

trol [19]. In the article she shows "how a system can learn about nonlineari-

ties through experience" gained by reinforcement learning [19, page 1096]. What

Franklin suggests is an arrangement that implements the processes an engineer

would go through in refining an initial design for improved performance. It may

be an interesting concept to explore with neural networks.

Most researchers in neural networks use the above three categories to define

Neural Network learning methods. Previously discussed in the sensor based robot

control section, Bartlett Mel of the University of Illinois adds another classification

called "learning-by-doing" using a "sigma-pi" learning rule [54, page 16]. In this

scheme, the neural network builds a mental model of the manipulator in the work

space from motor and sensor inputs. When given a task, the ANN develops a so-

lution based on relating the task to the mental model. In developing the solution,

MURPHY accounts for changes (obstacles) in the work space. The abilities demon-

strated by this approach show promise for use in many defense and commercial

applications.

A.7 Summary

This survey has focused on current applications of neural networks to control

robots and robotic devices. Brief reviews of current knowledge and abilities of

ANNs started this study. The indepth examination of how neural networks are

being used for robot control represents the bulk of this survey and was its primary

purpose. In structuring the data, four separate yet interrelated classes emerged.

For example, the article on MURPHY was summarized from different viewpoints

in both the training methods and sensor based robot control sections.

Trying to find experimental evaluations of applications for each section was

difficult and in some cases did not exist. In many cases only simulation research

A-17

... E •| |

could be found. The sparse a,,,unt of experimental data is understandable con-

sidering the recent reappearance of neural networks as an alternative computing

architecture. This review reveals the need for extensive on-equipment research into

how neural networks can be applied to robots and robot control.

A-18

Appendix B. A Proposed Temporal Mlultilayer Perceptron

B.1 Introduction

Multilayer perceptrons are used in static situations such as with a fixed

background for vision applications, or rigorous inverse dynamics when used for

a controller prefilter. However, the world is temporal. Some efforts to use neural

networks for temporal applications exist. In one example, the Temporal Order

Model uses time delays between nodes in both feedforward and feedback to pro-

duce short and long term memory within the same net [24,63]. Another approach

uses one layer of inputs and one layer of outputs in a time sequencer scheme. One

layer of weights reside between the layers and outputs are fed back as part of the

next input to implement a scene pattern correlator [69]. In the thesis research,

one method of adapting a static mechanism to a dynamic application has been

explored. As an offshoot of the thesis work, the following development and use

of a Temporal Multilayer Perceptron (TMLP) with a modified backpropagation

training algorithm is submitted.

B.2 Temporal Multilayer Perceptron Operation

The arrangement and interaction of the neural network array structures pre-

sented in Chapter 3 called the Neural Network Payload Estimator (NNPE) gave

the original insight into the proposed approach. The method uses weights existing

between a temporal vector of neural network arrays. Terminology used in the fol-

lowing discussion to identify a neural net within the temporal vector of nets, is as

follows:

" tj identifies the neural net at sample period j,

" tj- 1 identifies the neural net at sample period j - 1, and

* _ identifies the connecting weights between sample periods j - 1 and j.

B-1

The structure consists of Multilayer Perceptrons (MLPs) arranged in arrays span-

ning a given temporal space as shown in Figure B.1. The inputs are desired and

actual joint position information, qd and q respectively. The output is the estiniated

payload mass parameter d.

I)q(t,)

,, qI(tj)

N!

Figure B.1. Temporal Multilayer Perceptron Diagram

During feedforward operation the input to each node of the net at sample

period j is governed by:

9)y(tj) =f (wi(tj)xi(tj)) + (Wi(tj-ij)xi~ j-)) - 0 (B.1)

where:

9 y(lj) is the node output in the net at sample time j,

B-2

" xri(ti) is the ith node input in the net at sample time),

* w,(t,) is the ith input weight in the net at sample time j,

* .r, (tj -) is the ith node input from the net at sample time j - 1,

" w, (to.j) is the ith input weight for the inputs from the net at sample period

j -1,

* j is the sample time,

n r is the number of inputs to the node from each net, n from the net at sample

period j, and n from the net at sample period j - 1 (a total of 2n inputsj.

and

* 9 is the node threshold.

As an example each node output function f(9) is the signioidal function

I1f(.) -(B.2)
1 -- (°

Except for the output nodes, the output of each node from the previous sample

period neural network is weighted and used as additional inputs to the nodes in

the next neural nets in the temporal sequence.

Feedforward operation of the first neural net in a temporal sequence of nets

is the same as using standard backpropagation as outlined in Chapter 2. For

subsequent neural nets the previous sample period net's feature vector inputs are

weighted and summed along with the normal weighted inputs of the current sample

time. The output of each node is the sigmoidal (see Equation (B.2)) of the sum of

the weighted inputs to the node, minus the node threshold. The outputs of each

of the first hidden layer nodes of the current net and the previous sample time net

are weighted and applied to the current sample period neural net's second hidden

layer nodes. The process just described is repeated for subsequent net layers. The

output layer node outputs represent the decision of the net at the specified sample

B-3

time. However, the decision is reached using information from tie previois as

well as the current sample period. An additional enhancement, suggested by Dr.

Steven Rogers, would be to use the previous sample period payload estimate as an

additional input to current sample period neural net. The approach would enable

the initial (user supplied) payload estimate to be included with the first neural

network sampled. The technique may be further modified to include information

from other time rames within the net currently being sampled with an additional

computational penalty.

The computational overhead may be more than can be allowed. The nets

have proven to give viable results when not used every sample period. Therefore.

by using alternating loops, the original feedforward operations can be performed

over one cycle and the between net operations can be performed during the al-

ternate cycles. The result will be one more addition per node during the normal

feedforward cycle. Before any of the above discussion has any relevance, a set of

temporally trained neural nets is required.

B. 3 Temporal Multilayer Perceptron Neural Network Training

To train a temporal multilayer perceptron system, using a modified Back-

Propagation algorithm, the weights are initially set to random values. Next, vectors

consisting of a feature vector and the desired output are presented to the network

in a time sequence. The following equations illustrate the training algorithm; the

implementation is discussed later.

Letting the output of each node be governed by the sigmoidal

1
f 07) -- I(B.3)

1 + e - (17)

where 71 is an activation function. Deriving the equation for changing the weights

is accomplished by combining two standard backpropagation equations. One equa-

tion represents the current sample period net training and the other the training

B-4

of the weights between two nets (they do not need to be identical size nets). Coni-

biiiing the two equations:

ttij(t 4- 1) Wj(t) - bjX(i) + Or(wij(t) - wij(t - 1)) (B.4)

and

wZkJ(t + 1) u'k,.(t) + 6bj(4k) + c(wk,j(t) - Uj(t - 1)) (B.5)

yields

, k.a(t + 1) = Wi,k,(t) + . + xk) + a(i,kJ(t) - Wik,j(t - 1)) (B.6)

where:

* Uli,k.. is the weight between a given node, where

- i is the upper layer's node in the current sample time net,

- j is the next layer's node in the current sample time net,

- k is the upper layer's node in the previous sample time net,

" x is the training rate,

" where a is the training momentum factor,

• ii is the output of the current net's previous layer's ith node,

* 6 is the error term for node j, and

* 4k is the output of the previous net's previous layer's kth node.

The training rate X is a number between zero and one governing the search step

size. The training momentum factor a, is a number between zero and one used

to prevent from being trapped in a ravine in the parameter space. The difference

between the actual and desired network output becomes an error signal used to

adjust the weights. For all nodes except the output nodes bj is computed using:

= ij(1- j) (Z 6k.Uk + 6lwj,) (B.7)
k

where:

B-5

" .i is the node j output,

* U',, is the weight between nodes j and k,

" wjI is the weight between nodes j and ,where

- k is the above layer's node in the current sample time net,

- I is the above layer's node in the previous sample time net, and

- j is the output node in the current sample time net.

For the output nodes bj is determined by

bj = yy(1 - yj)(dj - y,) (B.8)

Here yj is the actual and dj is the desired node j output. As each training vector

is applied to the network, each connection weight is recursively updated from the

output layer towards the input layer using the criteria presented above. Each node

threshold is adjusted in a similar manner. When the weights and thresholds stabi-

lize for input feature vectors representing all the classes, the network is considered

trained and every weight and threshold is fixed. The previously outlined feedfor-

ward operation is used with the trained network for classifying unknown feature

vector inputs in a temporal sequence.

B-6

Appendix C. Troubleshooting

C.I Introduction

The following discussions are given to indicate some pitfalls and problems

encountered during the thesis research effort. Hopefully, they may save others

time and effort in implementing the techniques developed. The format is problem,

symptoms, and solution. Also, examples of before and after behavior are given

where applicable.

C.2 Problems Encountered

Problem: Neural nets failing to train.

Symptoms: After 20000 to 50000 training cycles a given neural network is not

training or approaching a stable minimum.

1. Training accuracy is low and error is high and unchanging, or

2. Training accuracy and error values are not stabilizing.

Solution: Start training the given net again using a different seed. Testing with

different random seed values indicated an uninvestigated correlation between

certain seed values and net training aptitude.

Problem: Incorrect representation of class information in the training vectors

formed during training vector formulation. To formulate training sets the

algorithm uses the trajectory data filename to determine the payload class

For example filename 'Allll0' indicates a class of 1 kilogram. The class is

noted by the '10' at the end of the filename which means a payload of 1

kilogram with the controller being told the payload is zero kilograms. The

problem occurs if the filename is longer or shorter than normally used and

the program keys in on the value '11' instead of '10'.

C-1

Symptoms: Each net trains to a constant low accuracy and high error. Attempts

to train the nets again using different seeds do not work.

Solution: Correct class presentation in training feature vectors.

Problem: Incorrectly coded feedforward algorithm.

Symptoms: Classification testing gave results that consistently indicated the

proper result for some cases and the wrong result for other cases.

1. The results were correct for about fifty percent of the inputs and when

they were wrong they were only off by one payload increment. At the

time assumed this to be normal for nets seeing information they had

not seen before.

2. Neural net firing patterns were always the same irregardless of trajectory

or payload situation.

Solution: Changed to node threshold addition throughout the feedforward algo-

rithm.

Explanation: In the feedforward algorithm, the node thresholds were being sub-

tracted as per the representation in Lippmann's article [49]. However, the

algorithm used to train the nets, which was borrowed, used addition of the

node thresholds.

Figure C.1 shows the neural networks firing pattern and performance with

the threshold being subtracted. The same pattern was observed for varying pay-

loads and initial conditions on trajectory 1A. Figure C.2 show the nets firing and

performance changing to threshold addition for the same payload, trajectory and

initial conditions. The problem of bad nets (covered next) became apparent only

after the threshold problem was corrected.

Problem: Bad individual nets.

C-2

.03

0 - -- ---

-.06
0 2 4 6 .8 1.2 14 1.6

TIME (SEC)

0 .2 .4 .6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure C.1. Neural Net Firing Pattern when Subtracting Threshold

Payload is 2 Kilogram
-- SMBC w/0.0 Kg Load information

-- - AMBNNC w/0.0 Kg Load information using 9 subtraction
A Neural Net outputs

Symptoms: Some nets give incorrect results regardless of the situation.

1. Usually see the same output for every situation.

2. Sometimes the output is only off by one or two payload increments in

each situation.

3. Individual net testing performance is okay.

Solution: Replace identified bad nets with newly trained nets. Sometimes retrain-

ing the nets will work. The reason for the performance problem is unknown.

C-3

03

-.03

-06

0 2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

2

-1

0 .2 .4 .6 .8 1 1.2 1.4 1.6

TIME (SEC)

Figure C.2. Neural Net Firing Pattern after changing to Threshold Addition

Payload is 2 Kilogram
- SMBC w/0.0 Kg Load information

S- •- SMBC w/2.0 Kg Load information
- - - AMBNNC w/2.0 Kg Load information using 9 addition

A Neural Net outputs

Figures C.3 and C.4 show the nets firing pattern and performance before

replacing a bad net for two different initial conditions. The bad net is at sample

period 250 and is identified by giving a three kilogram payload estimate for a one

kilogram payload and differing initial conditions. The same behavior is also seen

in Figure C.2 for a two kilogram payload. Figure C.5 shows the firing pattern and

performance after replacing the bad net. In some cases the performance was better

with incorrectly firing neural nets. Two bad nets were identified and replaced with

retrained nets.

C-4

4, _

~-.02 I-

0 .2 4 6 8 1 1.2 14 1.6

TIME (SEC)

~.,2 -,_ _ _ _

.2 .4 6 .8 1 1.2 1.4 1.6
TIME (SEC)

Figure C.3. Neural Net Firing Pattern showing Bad Net Firing

Payload is 1 Kilogram
-- SMBC w/0.0 Kg Load information

SMBC w/1.0 Kg Load information
- - - AMBNNC w/0.0 Kg Load information

A Neural Net outputs

The problem given next is probably computer and/or operating system de-

pendent.

Problem: Floating point overflow in FORTRAN math library.

Symptoms: Feedforward algorithms work one day and not the next. Investigation

revealed that during feedforward execution, if the power the exponential is

being raised to in the sigmoid function is greater than e"0 the program is

exited with a math over flow error.

C-5

|0

Ui -.02 . I
0 2 4 6 8 1 1.2 14 16

TIME (SEC)

'2

0i
,l , , ,

0 .2 .4 .6 8 1 1.2 14 1.6

TIME (SEC)

Figure C.4. Neural Net Firing Pattern showing Bad Net Firing

Payload is 1 Kilogram

SMBC w/0.0 Kg Load information
-•-SMBC w/1.0 Kg Load information
--- AMBNNC w/1.0 Kg Load information

A Neural Net outputs

Solution: The solution was to set an error trap which sets the sigmoid function

to zero when the power of the exponential is greater than or equal to 20. I

suspect the problem came about due to a software default being inadvertently

reset.

C-6

O 2 4 6 81 1.2 14 1 6

TIME (SE^,

0 I F F

0 2 .4 .6 8 I 1.2 1.4 1.6
TIME (SEC)

Figure C.5. Neural Net Firing Pattern after Replacing Bad Net

Payload is 1 Kilogram

-SMBC w/O.O Kg Load information
-- AMBNNC w/0.0 Kg Load informationj

A Neural Net outputs

C-7

C.3 Summary

These were the major problems encountered during the research effort. Oth-

ers that are found in future developments should be added to the list in an effort

to create a comprehensive list of problems for future investigators to be wary of

during implementation.

C-8

Bibliography

1. The American Heritage Dictionary (Second College Edition). Boston MtA
1982. Houghton Mifflin Company.

2. D. L. Akin and R. M. Sanner. Neuromophic pitch attitude regulation of an
underwater telerobot. In Proc. cf the 1989 American Control Conference,
pages 890-895, IEEE Press, Pittsburgh PA, June 1989.

3. 1. Aleksander. A review of parallel distributed processing. In 1. Aleksander,
editor, Neural Computing Architectures: the design of brain-like machines.
The MIT Press, Cambridge MA, 1989.

4. L. B. Almeida. Backpropagation in non-feedforward networks. In I. Alek-
sander, editor, Neural Computi,.g Architectures: the design of brain-like ma-
chines, chapter 5, The MIT Press, Cambridge, Massachusetts, 1989.

5. C. H. An, C. G. Atkeson, J. D. Griffiths, and J. M. Hollerbach. Experimen-
tal evaluation of feedforward and computed torque control. In Proc. of the
1987 Int. Conf. on Robotics and Automation, pages 165-168, IEEE Computer
Society Press, Raleigh NC, April 1987.

6. C. H. An, C. G. Atkeson, J. S. Griffiths, and J. M. Hollerbach. Experimen-
ta. c -.-hiation of feedforward and computed torque control. IEEE Trans. on
Robotics and Auicmaiion, 5(3):368-372, June 1989.

7. C. H. An, C. G. Atkeson, and J. M. Hollerbach. Estimation of inertial parame-
ters of rigid body links of manipulators. In Proceedingi of the 24th Conference
on Decision and Control, pages 990-995, IEEE Press, New York, December
1985.

8. C. W. Anderson. Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9:31-37, April 1989.

9. C. G. Atkeson, C. H. An, and J. M. Hollerbach. Rigid body load identification
for manipulators. In Proceedings of the 24th Conference on Decision and
Control, pages 996-1002, IEEE Press, New York, December 1985.

10. C. G. Atkeson and D. J. Reinkensmeyer. Using associative content-addressable
memories to control robots. In IEEE Proc. of the 1988 Int. Conf. on Robotics
and Automation, IEEE Computer Society Press, Washington D. C., 1988.

11. J. Barhen et al. Neural learning of constrained nonlinear transformations.
Computer, 22(6):67-76, June 1969.

12. A. G. Barto et al. Neuronlike adaptive elements that can solve difficult learn-
ing control problems. IEEE Transactions on Systems, Man, and Cybernetics,
2:834-846, September/October 1983.

13. P. S. Churchland and T. J. Sejnowski. Perspectives on cognitive neuroscience.
Science, 242:741-745, November 1988.

BIB-i

14. Defense Advanced Research Projects Agency (DARPA). DARPA Neural
Network Study. Executive Summary; Electronic Systems Division Contract
F19628-85-C-0002, Lincoln Laboratory, Massachusetts Institute of Technol-
ogy, Lexington MA, July 1988.

15. Defense Advanced Research Projects Agency (DARPA). DARPA Neural Net-
work Study. AFCEA Int. Press, Fairfax VA, November 1988

,6. M. Dvorak. Survey of Neural Net Paradigms for Specification of Discrete
Networks. Interim report for 1987 AD-A192682, Modal Logic Corporation,

Solano Beach CA, January 1988.

17. S. Eberlein. Decision making net for an autonomous roving vehicle. In Ab-
stract, from the 1988 Snowbird Conf. on Neural Networks for Computing,
page 333, IEEE Press, New York, 1988.

18. R. K. Elsley. A learning architecture for control based on back-propagation
neural networks. In Proc. of the 1988 Intl. Conf. on Neural Networks,
pages 587-594, IEEE Press, New York, 1988.

19. J. A. Franklin. Refinement of robot motor akillt through reinforcement iearn-
ing. In Proc. of the 27th Conf on Decision and Control, pages 1096-1101.
IEEE Press, New York, 1988.

20. K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. ROBOTICS: Control, Sensing,
Vision, and Intelligence. McGraw-Hill Book Company, New York, 1987.

21. K. Goldberg and B. Pearlmutter. Using A Neural Network to Learn the Dy-
namics of the CMU Direct-Drive Arm I. Technical Report CMU-CS-88-160,
Carnegie Mellon University, August 1988.

22. G. C. Goodwin and D. Q. Mayne. A parameter estimation perspective of
continuous-time mode reference adaptive control. Automatica, 23(1), 1987.

23. G. C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction, and Control.
Prentice-Hall, Englewood Cliffs NJ, 1984.

24. S. Grossberg and G. Stone. Neural dynamics of attertion switching and tem-
poral order information in short term memory. In S. Grossberg, editor, Neural
Networks and Naiural Intelligence, The MIT Press, Cambridge MA, 1988.

25. A. Guez and Z. Ahmad. Solution to the inverse kinematics problem in robotics
by neural networks. In Proc. of the IEFE Int. Conference on Neural Networks,
IEEE Press, New York, June 1988.

26. R. Hecht-Nielson. Neurocomputing applications. July 1988. Tutorial at the
IEEE Int. Conf. on Neural Networks, San Diego CA.

27. 0. Hernandez and M. Das. Design of nonlinear adaptive tracking controllers
for industrial robots. In Proc. of the 1989 American Control Conference,
pages 42-47, IEEE Press, Pittsburgh PA, June 1989.

BIB-2

28. E. R. Hilgard. Introduction to Psychology. Harcourt Brace Jovanovich, Inc.,
New York, seventh edition, 1979.

29. B. K. P. Horn. Robot Vision. MIT Press, Cambridge MA, 1986.

30. B. Home and M. Jamshidi. A connection network for robotic gripper control.
In Proc. of the 27th Conference on Decision and Control, IEEE Press, New
York, 1988.

31. T. Iberall. A neural network for planning hand shapes in human-prehension.
In Proc. of the 1988 American Control Conference, pages 2288-2293, IEEE
Press, Piscataway NJ, 1988.

32. M. A. Johnson. Payload Invariant Control via Neural Networks: Compendium
of Thesis Results and Software Support Tools. Technical Report ARSL-89-12,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1989.

33. P. K. Khosla and T. Kanada. Experimental evaluation of the feedforward
compensation and computed-torque control schemes. In Proc. of the Azerican
Control Conference, pages 790-798, IEEE Press, Seattle WA, June 1986.

34. P. K. Khosla and T. Kanade. Experimental evaluation of nonlinear feed-
back and feedforward control schemes for manipulators. The Intl. Journal of
Robotics Research, 7(1):18-28, February 1988.

35. T. Kohonen. An introduction to neural computing. Neural Networks, 1:3-16,
January 1988.

36. B. Kosko. Associative memory. July 1988. Tutorial at the IEEE It. Conf.
on Neural Networks, San Diego CA.

37. L. G. Kraft and D. P. Campagna. A comparison of cmac neural network and
traditional adaptive contro! systems. In Proc. of the 1989 American Control
Conference, pages 884-889, IEEE Press, Pittsburgh PA, June 1989.

38. S. Y. Kung and J. N. Hwang. Neural network architectures for robotic ap-
plications. IEEE Trans. on Robotics and Automation, 5(5):641-657, October
1989.

39. M. Kuperstein. Implementation of an adaptive visually-guided neural con-
troller for single postures. In Proc. of the 1988 American Control Conference,
pages 2282-2287, IEEE Press, Piscataway NJ, 1988.

40. M. Kuperstein and J. Rubinstein. Implementation of an adaptive neural con-
troller for sensory-motor coordination. IEEE Control systems Magazine, 9:25-
30, April 1989.

41. M. B. Leahy Jr. Dynamics based control of vertically articulated manipula-
tors. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1046-
1056, IEEE, New York, April 1988..

BIB-3

42. NI. B. Leahy Jr. Eeng 540 class notes, robotic fundamentals .. January
1988. School of Engineering, Air Force Institute of Technology (At). Wright-
Patterson FB OH.

43. M. B. Leahy Jr. Experimental analysis of robot control: a performance stan-
dard for the puma-560. In Proc. of the IEEE 4th Int. Symposium on Intelligent
Control, Wright-Patterson AFB OH, September 1989.

-4. M. B. Leahy Jr. Robot performance discussions. October 1989.

-15. M. B. Leahy Jr. and G. N. Saridis. Compensation of industrial manipulator
dynamics. The Intl. Journal of Robotic Research, 8(4):73-84, August 19S9.

46. M. B. Leahy Jr., K. P. Valvanis, and G. N. Saridis. Evaluation of dynamic
models for puma robot control. IEEE Trans. on Robotics and Automnation.
5(2):242-244, April 1989.

47. W. Li and J.-J. E. Slotine. On-line parameter estimation for robot manipula-
tors. in Proceedings of the 1988 IEEE International Conference on Systems,
Man, and Cybernetics, pages 353-356, IEEE Press, New York, August 1988.

48. P. W. Likens. Elements of Engineering Mechanics. McGraw-Hill Book Com-
pany, New York, 1973.

49. R. P. Lippmann. An introduction to computing with neural nets. Acoustics,
Speech and Signal Proce.ssing Magazine, 4:4-22, April 1987.

50. H. Liu and others. Neural network architecture for robot hand control. IEEE
Control systems Magazine, 9:38-43, April 1989.

51. P. S. Maybeck. Eeng 766 class notes and discussions, stochastic estimation
and control ii. December 1989. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH.

52. P. S. Maybeck. Eeng 768 class notes and discussions, stochastic estimation
and control iii. December 1989. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH.

53. P. S. Maybeck. Stochastic Model, Estimation and Control. Volume 1, Aca-
demic Press, Inc., New York, 1979.

54. B. W. Mel. MURPHY: A Neurally-Inspired Connectionist Approach to Learn.
ing and Performance in Vision-Based Robot Motion Planning. Thesis, Center
far Complex Systems Research, Beckman Institute, University of Illinois, Ur-
bana IL, February 1989.

55. R. H. Middleton and G. C. Goodwin. Adaptive computed torque control for
rigid link manipulators. In Proceedings of the 25th Conference on Decision
and Control, pages 68-73, IEEE Press, New York, December 1986.

BIB-4

56. T. W. Miller et al. Real Time Dynamic Control of an Industrial Manipulator
Using a Neural Network Based Learning Controller. Technical Report, Uni-
versity of New Hampshire, December 1988. To appear in 1989 IEEE Journal
of Robotics and Automation.

57. G. W. Neat, J. T. Wen, and H. Kuafman. Expert heirarchical adaptive control.
In Proc. of the 1989 American Control Conference, Pittsburgh PA, June 1989.

58. C. V. Negoita and D. A. Ralescu. Simulation, Knowledge-based Computing,
and Fuzzy Statistics. Van Nostrand Reinhold Company, New York, 1987.

59. Y. C. Pate and others. Neural networks for tacktile perception. In IEEE Proc
of the 1988 Intl. Conf. on Robotics and Automation, pages 134-139, Computer
Society Press of the IEEE, Washington D. C., 1988.

60. H. H. Poole. Fundamentals of Robotics Engineering. Van Nostrand Reinhold.
New York, 1989.

61. F. Pourboghrat and M. R. Sayeh. Neural network learning controller for
manipulators. In Abstract, from the 1988 Snowbird Conf. on Neural Networks
for Computing, page 356, IEEE Press, New York, 1988.

62. J. S. Reed and P. A. Ioannou. Instability analysis and robust adaptive control
of robotic manipulators. IEEE Trans. on Robotics and Automation, 5(3):381-
385, June 1989.

63. R. Ricart. August 1989. Discussions concerning Dipole neural networks: their
operation and application.

64. S. K. Rogers. July-November 1989. Discussions concerning neural network
structures and training techniques.

65. D. W. Ruck. Multisensor Target Detection and Classification. Master's thesis,
Air Force Institute of Technology, Air University, December 1987.

66. D. W. Ruck, S. K. Rogers, M. Kabrisky, and P. S. Maybeck. Back propagation:
a degenerate kalman filter? May 1989. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH. Submitted to the
IEEE transactions on Pattern Analysis and Machine Intelligence.

67. D. E. Rumelhart and J. L. McCleland. Parallel Distributed Processing, Vols
I & 2. The MIT Press, Cambridge MA, 1986.

68. Samuel Sablan. MMAE Techniques for Adaptive Model-Based Robot Control.
Master's thesis, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1989.

69. N. E. Sharkey. A pdp learning approach to natural language understanding.
In I. Aleksander, editor, Neural Computing Architectures: the design of brain-
like machines, The MIT Press, Cambridge MA, 1989.

BIB-5

70. J.-J. E. Slotine and W. Li. Adaptive manipulator control: a case study. In
IEEE Proc of the 1987 Intl. Conf. on Robotics and Automation, pages 1392-
1400, Computer Society Press of the IEEE, Raleigh NC, 1987.

71. C. H. Spenny. Mech 523 class notes, dynamics of robotic devices. March
1989. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH.

72. C. H. Spenny. Mech 723 class notes, literature study in robotics. June
1989. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH.

73. J. R. Stright. A Neural Network Implementation of Chaotic Time Series
Prediction. Master's thesis, Air Force Institute of Technology, Air University,
December 1988.

74. G. L. Tarr. Dynamic Analysis of Feedforward Neural Networks using Simu-
lated and Measured Data. Master's thesis, Air Force Institute of Technology,
Air University, December 1988.

75. G. Tattersall. Neural map applications. In I. Aleksander, editor, Neural
Computing Architectures: the design of brain-like machines, chapter 4, The
MIT Press, Cambridge, Massachusetts, 1989.

76. L. D. Tellman. Multiple Model Adaptive Estimation for Robot Tracking. Mas-
ter's thesis, Air Force Institute of Technology, Air University, October 1988.

77. J. T. Tou. Software architecture of machine vision for roving robots. Optical

Engine, ring, 25(3):428-435, March 1986.

78. M. W. Walker. Estimating manipulator load mass properties. In IEEE In-
ternational Symposium on Intelligent Control, IEEE Computer Society Press,
Washington D. C., 1987.

79. B. Widrow. Adaptive neural networks. July 1988. Tutorial at the IEEE Int.

Conf. on Neural Networks, San Diego CA.

BIB-6

L nN UI

Vita

Captain Mark A. Johnson

1971 Wenlisted in the USAF in December, 1971. He was trained and worked as

an Electronic Communicatiori and Cryptographic Equipment System Repairman

until 1982. Including initial training, his assignments through 1982 are:

* Lackland AFB, Texas (1971 - 73),

" Incirlik AS, Turkey (1973 - 74),

" Buckley ANGB, Colorado (1974 - 76),

" Woomera AS, South Australia (1976 - 78), and

" Ramstein AB, Germany (1978 - 82).

In 1982, then TSgt Johnson, attended the University of Texas at Austin,

Texas as part of the Air Force Airman Education and Commissioning Program. In

1985 he received a Bachelor of Science in Electrical Engineering from the University

of Texas and went on to attend the United States Air Force Officer Training School.

Commissioned in October 1985, he was assigned to Headquarters, Electronic Se-

curity Command (ESC), where he was responsible for: configuration control of

ESC air and ground systems; management of command publications; evaluation

of engineering proposals; development of system standards, testing methods, and

evaluation criteria; and development of new system testing systems. He entered

the Masters Program at the Air Force Institute of Technology, Wright-Patterson

AFB, Ohio in May 1988. In October of 1989, Mark Johnson was promoted to

Captain in the Regular Air Force.

VITA-i

U NCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNI'A3SIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/89D-20

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
WPAFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Armstrong Aero. (If applicable)

Medical Research Laboratory I AAMRL/01A
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

Wright-Patterson AFB, OHIO, 45433

11. TITLE (Include Security Classification)

PAYLOAD INVARIANT CONTROL via NEURAL NETWORKS: DEVELOPMENT AND EXPERIMENTAL EVALUATION

12. PERSONAL AUTHOR(S)

Mark Alme Johnson, Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

MS Thesis FROM TO I 1989, December 156
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ROBOT, ROBOTICS, ROBOT CONTROL, ADAPTIVE CONTROL, ADAPTIVE
Iz C19 MODEL-BASED CONTROL, NEURAL NETWORKS, PATTERN RECOGNITION,

PARAMETER ESTIMATION
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Michael B. Leahy, Captain, USAF
Assistant Professor of Electrical Engineering

Abstract on Reverse Side.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

IUNCLASSIFIED/UNLIMITED [I SAME AS RPT. 0 OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c- OFFICE SYMBOL

Capt. Michael B. Leahy Jr. (513) 255-9268 AFIT/ENG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Abstract

A new form of adaptive model-based control is proposed and experi-
mentally evaluatcd. An Adaptive Model-Based Neural Network C'-ntro~ler
(AMBNNC) uses multilayer perceptron artificial neural networks to estimate
the payload during high speed manipulator motion. The payload estimate
adapts the feedforward compensator to unmodeled system dynamics and
payload variations. The neural nets are trained through repetitive trr:a-
ing on trajectory tracking error data. The AMBNNC is experimentally
evaluated on the third link of a PUMA-560 manipulator. Tracking perfor-

mance is evaluated for a wide range of payload and trajectory conditions and
compared to a non-adaptive model-based controller. The superior tracking
accuracy of the A!,:3NNC demoun,,es Lie potential of the proposed tech-
nique.

UNCLASSIFIED

